PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Study: Under extreme impacts, metals get stronger when heated

The unexpected finding could be important for designing spacecraft shielding or in high-speed machining applications.

2024-05-22
(Press-News.org)

Metals get softer when they are heated, which is how blacksmiths can form iron into complex shapes by heating it red hot. And anyone who compares a copper wire with a steel coat hanger will quickly discern that copper is much more pliable than steel. 

But scientists at MIT have discovered that when metal is struck by an object moving at a super high velocity, the opposite happens: The hotter the metal, the stronger it is. Under those conditions, which put extreme stress on the metal, copper can actually be just as strong as steel. The new discovery could lead to new approaches to designing materials for extreme environments, such as shields that protect spacecraft or hypersonic aircraft, or equipment for high-speed manufacturing processes.

The findings are described in a paper appearing today in the journal Nature, by Ian Dowding, an MIT graduate student, and Christopher Schuh, former head of MIT’s Department of Materials Science and Engineering, now dean of engineering at Northwestern University and visiting professor at MIT. 

The new finding, the authors write, “is counterintuitive and at odds with decades of studies in less extreme conditions.” The unexpected results could affect a variety of applications because the extreme velocities involved in these impacts occur routinely in meteorite impacts on spacecraft in orbit and in high-speed machining operations used in manufacturing, sandblasting, and some additive manufacturing (3D printing) processes.

The experiments the researchers used to find this effect involved shooting tiny particles of sapphire, just millionths of a meter across, at flat sheets of metal. Propelled by laser beams, the particles reached high velocities, on the order of a few hundred meters per second. While other researchers have occasionally done experiments at similarly high velocities, they have tended to use larger impactors, at the scale of centimeters or larger. Because these larger impacts were dominated by effects of the shock of the impact, there was no way to separate out the mechanical and thermal effects. 

The tiny particles in the new study don’t create a significant pressure wave when they hit the target. But it has taken a decade of research at MIT to develop methods of propelling such microscopic particles at such high velocities. “We’ve taken advantage of that,” Schuh says, along with other new techniques for observing the high-speed impact itself. 

The team used extremely high-speed cameras “to watch the particles as they come in and as they fly away,” he says. As the particles bounce off the surface, the difference between the incoming and outgoing velocities “tells you how much energy was deposited” into the target, which is an indicator of the surface strength.

The tiny particles they used were made of alumina, or sapphire, and are “very hard,” Dowding says. At 10 to 20 microns (millionths of a meter) across, these are between one-tenth and one-fifth of the thickness of a human hair. When the launchpad behind those particles is hit by a laser beam, part of the material vaporizes, creating a jet of vapor that propels the particle in the opposite direction.

The researchers shot the particles at samples of copper, titanium, and gold, and they expect their results should apply to other metals as well. They say their data provide the first direct experimental evidence for this anomalous thermal effect of increased strength with greater heat, although hints of such an effect had been reported before.

The surprising effect appears to result from the way the orderly arrays of atoms that make up the crystalline structure of metals move under different conditions, according to the researchers’ analysis. They show that there are three separate effects governing how metal deforms under stress, and while two of these follow the predicted trajectory of increasing deformation at higher temperatures, it is the third effect, called drag strengthening, that reverses its effect when the deformation rate crosses a certain threshold. 

Beyond this crossover point, the higher temperature increases the activity of phonons — waves of sound or heat — within the material, and these phonons interact with dislocations in the crystalline lattice in a way that limits their ability to slip and deform. The effect increases with increased impact speed and temperature, Dowding says, so that “the faster you go, the less the dislocations are able to respond.”

Of course, at some point the increased temperature will begin to melt the metal, and at that point the effect will reverse again and lead to softening. “There will be a limit” to this strengthening effect, Dowding says, “but we don’t know what it is.”

The findings could lead to different choices of materials when designing devices that may encounter such extreme stresses, Schuh says. For example, metals that may ordinarily be much weaker, but that are less expensive or easier to process, might be useful in situations where nobody would have thought to use them before.

The extreme conditions the researchers studied are not confined to spacecraft or extreme manufacturing methods. “If you are flying a helicopter in a sandstorm, a lot of these sand particles will reach high velocities as they hit the blades,” Dowding says, and under desert conditions they may reach the high temperatures where these hardening effects kick in.

The techniques the researchers used to uncover this phenomenon could be applied to a variety of other materials and situations, including other metals and alloys. Designing materials to be used in extreme conditions by simply extrapolating from known properties at less extreme conditions could lead to seriously mistaken expectations about how materials will behave under extreme stresses, they say.

The research was supported by the U.S. Department of Energy.

 

###

Written by David L. Chandler, MIT News

Paper: “Metals strengthen with increasing temperature at extreme strain rates”

http://doi.org/10.1038/s41586-024-07420-1

 

END



ELSE PRESS RELEASES FROM THIS DATE:

Firearm Homicide Demographics Before and After the COVID-19 Pandemic

2024-05-22
About The Study: In this study, death by firearm homicide was concentrated among Black individuals ages 15 to 24 before, during, and subsequent to the COVID-19 pandemic, implying that there are likely to be social and structural conditions that contribute to these racial disparities.  Corresponding Author: To contact the corresponding author, Alex R. Piquero, Ph.D., email axp1954@miami.edu. To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/ (doi:10.1001/jamanetworkopen.2024.12946) Editor’s ...

Transmission of mental disorders in adolescent peer networks

2024-05-22
About The Study: The findings of this study suggest that mental disorders might be transmitted within adolescent peer networks. More research is required to elucidate the mechanisms underlying the possible transmission of mental disorders.  Corresponding Author: To contact the corresponding author, Jussi Alho, Ph.D., email jussi.alho@helsinki.fi. To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/ (10.1001/jamapsychiatry.2024.1126) Editor’s Note: Please see the article ...

Transitioning gender identities is not linked with depression

2024-05-22
A landmark longitudinal study of LGBTQ+ youths has found that transitioning gender identities is not associated with depression and that about 1 in 3 gender-minority youths change their gender identity more than once. In fact, the study found higher rates of depression among transgender youths are more closely associated with bullying and victimization. The findings from a team of researchers at The University of Texas at Austin and in Brazil are outlined in a paper in JAMA Network Open. The study followed 366 LGBTQ+ young people ages 15-21 in two U.S. cities from 2011 to 2015 and measured depressive symptoms ...

Century-old vaccine protects type 1 diabetics from infectious diseases

2024-05-22
BOSTON--In new research, investigators at Massachusetts General Hospital (MGH) show that the 100-year-old Bacillus Calmette-Guérin (BCG) vaccine, originally developed to prevent tuberculosis, protects individuals with type 1 diabetes from severe COVID-19 disease and other infectious diseases. Two back-to-back randomized double-blinded placebo-controlled trials found that the BCG vaccine provided continuous protection for nearly the entire COVID-19 pandemic in the US, regardless of the viral variant. “Individuals with type 1 diabetes are highly susceptible to infectious diseases and had worse outcomes when they were infected with the SARS-CoV-2 virus,” ...

How and why different cell division strategies evolve

2024-05-22
Cell division is fundamental to life, enabling growth, reproduction, and survival across all organisms, from single-celled bacteria to complex multicellular animals. While animals and fungi share a common eukaryotic ancestry, their mechanisms of cell division, particularly mitosis, have diverged significantly, raising intriguing evolutionary questions. Animals typically undergo open mitosis, where the nuclear envelope disassembles during cell division, while fungi exhibit closed mitosis, maintaining an intact nuclear envelope. The evolutionary reasons behind these divergent strategies ...

IPK research team uncovers mechanism for spikelet development in barley

IPK research team uncovers mechanism for spikelet development in barley
2024-05-22
The inflorescence architecture of crop plants like barley is predominantly regulated by meristem activity and fate, which play a critical role in determining the number of floral structures for grain production. Spikelets are the basic reproductive unit of grass inflorescences. The identity and determinacy of many grass meristems are partially determined by a group of genes expressed specifically at organ boundaries, which can form local signalling centres that regulate adjacent meristem fate and activity. These genes are critical for establishing and ...

Ancient DNA study reveals population history of Western Tibetan Plateau

Ancient DNA study reveals population history of Western Tibetan Plateau
2024-05-22
According to a study published in Current Biology on May 22, the genetic components of the ancient populations in the western Tibetan Plateau are closest to ancient populations in the southern Tibetan Plateau, and their major genetic components have been maintained over the past 3,500 years. In addition, these ancient populations in the western Tibetan Plateau had complex and frequent interactions with ancient populations inside and outside the plateau. The study was conducted by Prof. FU Qiaomei's team from the Institute of Vertebrate Paleontology and Paleoanthropology ...

Exploring diversity in cell division

Exploring diversity in cell division
2024-05-22
Cell division is one of the most fundamental processes of life. From bacteria to blue whales, every living being on Earth relies on cell division for growth, reproduction, and species survival. Yet, there is remarkable diversity in the way different organisms carry out this universal process. A new study from EMBL Heidelberg’s Dey group and their collaborators, recently published in Nature, explores how different modes of cell division evolved in close relatives of fungi and animals, demonstrating, for the first time, the link between an organism’s ...

Sweet move: a modified sugar enhances antisense oligonucleotide safety and efficacy

Sweet move: a modified sugar enhances antisense oligonucleotide safety and efficacy
2024-05-22
Researchers from Tokyo Medical and Dental University (TMDU) and Osaka University find that a newly developed modified sugar increases the efficacy and safety of antisense oligonucleotides designed to treat central nervous system disease   Tokyo, Japan – Diseases that affect the brain and spinal cord can be particularly devastating, and finding new and more effective ways to treat these conditions is an important goal for researchers and clinicians alike. Now, a research group from Japan reports that slightly modifying an existing treatment for central nervous system (CNS) disease dramatically increases its ...

Treatment options for hepatocellular carcinoma using immunotherapy: present and future

Treatment options for hepatocellular carcinoma using immunotherapy: present and future
2024-05-22
Hepatocellular carcinoma (HCC), a prevalent form of cancer, profoundly influences the progression and prognosis of the disease through immune response mechanisms. The tumor microenvironment plays a pivotal role in fostering immune suppression and maintaining self-tolerance, which are crucial in developing and refining immunotherapy approaches. In our comprehensive review, we initially delve into the characteristics of the tumor microenvironment in HCC, elucidating the predominant immunosuppressive mechanisms at play and the biomarkers pivotal for tracking the disease progression and therapeutic ...

LAST 30 PRESS RELEASES:

Microwave-induced pyrolysis: A promising solution for recycling electric cables

Cooling with light: Exploring optical cooling in semiconductor quantum dots

Breakthrough in clean energy: Scientists pioneer novel heat-to-electricity conversion

Study finds opposing effects of short-term and continuous noise on western bluebird parental care

Quantifying disease impact and overcoming practical treatment barriers for primary progressive aphasia

Sports betting and financial market data show how people misinterpret new information in predictable ways

Long COVID brain fog linked to lung function

Concussions slow brain activity of high school football players

Study details how cancer cells fend off starvation and death from chemotherapy

Transformation of UN SDGs only way forward for sustainable development 

New study reveals genetic drivers of early onset type 2 diabetes in South Asians 

Delay and pay: Tipping point costs quadruple after waiting

Magnetic tornado is stirring up the haze at Jupiter's poles

Cancers grow uniformly throughout their mass

Researchers show complex relationship between Arctic warming and Arctic dust

Brain test shows that crabs process pain

Social fish with low status are so stressed out it impacts their brains

Predicting the weather: New meteorology estimation method aids building efficiency

Inside the ‘swat team’ – how insects react to virtual reality gaming 

Oil spill still contaminating sensitive Mauritius mangroves three years on

Unmasking the voices of experience in healthcare studies

Pandemic raised food, housing insecurity in Oregon despite surge in spending

OU College of Medicine professor earns prestigious pancreatology award

Sub-Saharan Africa leads global HIV decline: Progress made but UNAIDS 2030 goals hang in balance, new IHME study finds

Popular diabetes and obesity drugs also protect kidneys, study shows

Stevens INI receives funding to expand research on the neural underpinnings of bipolar disorder

Protecting nature can safeguard cities from floods

NCSA receives honors in 2024 HPCwire Readers’ and Editors’ Choice Awards

Warning: Don’t miss Thanksgiving dinner, it’s more meaningful than you think

Expanding HPV vaccination to all adults aged 27-45 years unlikely to be cost-effective or efficient for HPV-related cancer prevention

[Press-News.org] Study: Under extreme impacts, metals get stronger when heated
The unexpected finding could be important for designing spacecraft shielding or in high-speed machining applications.