(Press-News.org) The function of non-coding RNA in the cell has long been a mystery to researchers. Unlike coding RNA, non-coding RNA does not produce proteins – yet it exists in large quantities. A research team from the University of Göttingen has now discovered an important function of antisense RNA (asRNA): the researchers found that asRNA acts as a "superhighway" in cell transport and thus accelerates gene expression. The results were published in Nature.
RNA (ribonucleic acid) plays a central role in the translation of DNA information into proteins. There are different types of RNA, one of which is known as messenger RNA (mRNA). Messenger RNA is a type of coding RNA and its job is to transmit the building instructions for proteins from the DNA in the cell nucleus out into the cytoplasm, where other cell components translate them into proteins. In addition to coding RNA, there are large quantities of non-coding RNA. Much of the non-coding RNA is produced as the complementary strand to mRNA and is therefore referred to as antisense RNA (asRNA). Their function has been unclear for a long time. "It seemed unbelievable to me that a cell would produce RNAs without a purpose," says Professor Heike Krebber from Göttingen University’s Institute of Microbiology and Genetics. "This is contrary to nature."
Krebber’s team discovered that asRNA combines with mRNA, which is then preferentially transported from the cell nucleus into the cytoplasm. This means that the cell translates the information from the mRNA into proteins faster than would be the case without asRNA. Therefore, asRNA serves as a "booster" for gene expression. This is necessary for the cell in many situations, for example when confronted with harmful environmental conditions or stress. This work is the next step from the team's earlier basic research, also published in Nature, which showed that mRNAs activated under stress are no longer subject to quality control.
The new research findings about asRNAs solve the long-standing question of why the cell sometimes produces large quantities of asRNA. "In biology, this is particularly striking because the cell expends a lot of energy on asRNA production," explains Krebber. The mechanism that has now been discovered explains how cells can react abruptly to external influences to produce the necessary proteins immediately and in large quantities in order to adapt to environmental conditions or, for example, to enter a certain stage of development. "This new understanding brings asRNAs into the focus of the question of how diseases develop and how they can be combated," says Krebber.
Original publication: Coban, I. et al. dsRNA formation leads to preferential nuclear export and gene expression. Nature 2024. Doi: 10.1038/s41586-024-07576-w
Contact:
Professor Heike Krebber
University of Göttingen
Göttingen Center for Molecular Biosciences GZMB, and
Institute of Microbiology and Genetics - Department of Molecular Genetics
Grisebachstraße 8, 37077 Göttingen
Telephone: (0551) 39-23801
Email: heike.krebber@biologie.uni-goettingen.de
www.img.bio.uni-goettingen.de/Krebber-lab_homepage.html
The function of non-coding RNA in the cell has long been a mystery to researchers. Unlike coding RNA, non-coding RNA does not produce proteins – yet it exists in large quantities. A research team from the University of Göttingen has now discovered an important function of antisense RNA (asRNA): the researchers found that asRNA acts as a "superhighway" in cell transport and thus accelerates gene expression. The results were published in Nature.
RNA (ribonucleic acid) plays a central role in the translation of DNA information into proteins. There are different types of RNA, one of which is known as messenger RNA (mRNA). Messenger RNA is a type of coding RNA and its job is to transmit the building instructions for proteins from the DNA in the cell nucleus out into the cytoplasm, where other cell components translate them into proteins. In addition to coding RNA, there are large quantities of non-coding RNA. Much of the non-coding RNA is produced as the complementary strand to mRNA and is therefore referred to as antisense RNA (asRNA). Their function has been unclear for a long time. "It seemed unbelievable to me that a cell would produce RNAs without a purpose," says Professor Heike Krebber from Göttingen University’s Institute of Microbiology and Genetics. "This is contrary to nature."
Krebber’s team discovered that asRNA combines with mRNA, which is then preferentially transported from the cell nucleus into the cytoplasm. This means that the cell translates the information from the mRNA into proteins faster than would be the case without asRNA. Therefore, asRNA serves as a "booster" for gene expression. This is necessary for the cell in many situations, for example when confronted with harmful environmental conditions or stress. This work is the next step from the team's earlier basic research, also published in Nature, which showed that mRNAs activated under stress are no longer subject to quality control.
The new research findings about asRNAs solve the long-standing question of why the cell sometimes produces large quantities of asRNA. "In biology, this is particularly striking because the cell expends a lot of energy on asRNA production," explains Krebber. The mechanism that has now been discovered explains how cells can react abruptly to external influences to produce the necessary proteins immediately and in large quantities in order to adapt to environmental conditions or, for example, to enter a certain stage of development. "This new understanding brings asRNAs into the focus of the question of how diseases develop and how they can be combated," says Krebber.
Original publication: Coban, I. et al. dsRNA formation leads to preferential nuclear export and gene expression. Nature 2024. Doi: 10.1038/s41586-024-07576-w
Contact:
Professor Heike Krebber
University of Göttingen
Göttingen Center for Molecular Biosciences GZMB, and
Institute of Microbiology and Genetics - Department of Molecular Genetics
Grisebachstraße 8, 37077 Göttingen
Telephone: (0551) 39-23801
Email: heike.krebber@biologie.uni-goettingen.de
www.img.bio.uni-goettingen.de/Krebber-lab_homepage.html
END
How cells boost gene expression
Research team at Göttingen University discovers important function of antisense non-coding RNA
2024-06-24
ELSE PRESS RELEASES FROM THIS DATE:
Meet CARMEN, a robot that helps people with mild cognitive impairment
2024-06-24
Video: https://youtu.be/bGKA32TlVXM?si=0PdhaUyOKH33DFbB
Meet CARMEN, short for Cognitively Assistive Robot for Motivation and Neurorehabilitation–a small, tabletop robot designed to help people with mild cognitive impairment (MCI) learn skills to improve memory, attention, and executive functioning at home.
Unlike other robots in this space, CARMEN was developed by the research team at the University of California San Diego in collaboration with clinicians, people with MCI, and their care partners. To the best of the researchers’ knowledge, CARMEN is also the only robot that teaches compensatory cognitive strategies to help improve memory and executive function.
“We ...
NYU creates Center for Mind, Ethics, and Policy
2024-06-24
New York University has established the Center for Mind, Ethics, and Policy, which aims to further our understanding of the sentience and moral status of nonhumans, notably animals and AI systems.
“The world contains quintillions of animals, and in the future, it could contain an even larger number of AI systems,” says Jeff Sebo, CMEP’s founding director and a professor in NYU’s Department of Environmental Studies. “Human activity is increasingly shaping the lives of these beings, and these trends raise important and difficult questions, such as: Which of these beings are sentient, ...
New mathematical proof helps to solve equations with random components
2024-06-24
Whether it’s physical phenomena, share prices or climate models – many dynamic processes in our world can be described mathematically with the aid of partial differential equations. Thanks to stochastics – an area of mathematics which deals with probabilities – this is even possible when randomness plays a role in these processes. Something researchers have been working on for some decades now are so-called stochastic partial differential equations. Working together with other researchers, Dr. Markus Tempelmayr ...
Researchers awarded $2.78M federal grant to improve rectal cancer treatment with artificial intelligence
2024-06-24
CLEVELAND—With a new five-year, $2.78 million grant from the National Institutes of Health and National Cancer Institute, researchers at Case Western Reserve University(CWRU), Cleveland Clinic and University Hospitals (UH) will use artificial intelligence (AI) to better treat rectal cancer patients.
The American Cancer Society estimates about 46,000 people nationally will be diagnosed this year with rectal cancer—the third most common type of cancer in the digestive system, after colon and pancreatic cancer.
By using AI, the researchers intend to derive specific metrics on magnetic resonance imaging (MRI) scans to better understand how ...
Manipulating the frequency of terahertz signals through temporal boundaries
2024-06-24
Terahertz technology could help us meet the ever-increasing demand for faster data transfer rates. However, the down-conversion of a terahertz signal to arbitrary lower frequencies is difficult. In a recent study, researchers from Japan have developed a new strategy to up- and down-convert a terahertz signal in a waveguide by dynamically modifying its conductivity using light, creating a temporal boundary. Their findings could pave the way to faster and more efficient optoelectronics and enhanced telecommunications.
As we plunge deeper into the Information Age, the demand for faster data transmission keeps soaring, accentuated by fast progress in fields like deep learning ...
Study links neighborhood violence, lung cancer progression
2024-06-24
CHAMPAIGN, Ill. — Scientists have identified a potential driver of aggressive lung cancer tumors in patients who live in areas with high levels of violent crime. Their study found that stress responses differ between those living in neighborhoods with higher and lower levels of violent crime, and between cancerous and healthy tissues in the same individuals.
The findings are detailed in the journal Cancer Research Communications.
The study was designed to address the higher incidence of lung cancer in Black men than in white men, said University of Illinois Urbana-Champaign ...
Philadelphia social entrepreneurs address root causes of community violence
2024-06-24
PHILADELPHIA, June 24, 2024 — About 80% of an individual’s modifiable health contributors are determined by social and economic factors.[1] Exposure to violence can have detrimental health implications contributing to toxic stress and trauma, mental health illness, substance abuse and an increased risk for heart disease[2].
The American Heart Association, which marked 100 years of service saving lives earlier this month, has distributed $480,000 from the Association’s Bernard J. Tyson Impact Fund to four social ...
Choosing outcomes: new switchable process for synthesizing 3-aminoindolines and 2’-aminoarylacetic acids from same substrate
2024-06-24
Aniline or nitrogen-containing organic molecules like 3-aniline-substituted indoles commonly found in natural products have shown promising results as pharmaceutical contenders. The same goes for moieties such as 2-aminoaryl acetic acid scaffold which forms the fundamental structural motif of nonsteroidal anti-inflammatory drugs such as diclofenac which inhibits COX-2 to relieve pain and inflammation. While there are several ways of synthesizing these molecules individually using different starting materials, can we produce them ...
Doing a skin check? Confidence is key & social media ads may help
2024-06-24
It’s summer and time to enjoy the sunshine. But it’s also important to do so safely. Skin cancer is the most common form of cancer in the United States—and it’s most commonly caused by sun exposure. Research has shown that skin self-awareness and regular skin self-examinations are strongly linked to better treatment outcomes if you receive a skin cancer diagnosis.
As part of an effort to identify effective interventions to increase skin self-examinations and decrease melanoma deaths, faculty ...
Researchers engineer AI path to prevent power outages
2024-06-24
University of Texas at Dallas researchers have developed an artificial intelligence (AI) model that could help electrical grids prevent power outages by automatically rerouting electricity in milliseconds.
The UT Dallas researchers, who collaborated with engineers at the University at Buffalo in New York, demonstrated the automated system in a study published online June 4 in Nature Communications.
The approach is an early example of “self-healing grid” technology, which uses AI to detect and repair problems such as outages ...
LAST 30 PRESS RELEASES:
New perspective highlights urgent need for US physician strike regulations
An eye-opening year of extreme weather and climate
Scientists engineer substrates hostile to bacteria but friendly to cells
New tablet shows promise for the control and elimination of intestinal worms
Project to redesign clinical trials for neurologic conditions for underserved populations funded with $2.9M grant to UTHealth Houston
Depression – discovering faster which treatment will work best for which individual
Breakthrough study reveals unexpected cause of winter ozone pollution
nTIDE January 2025 Jobs Report: Encouraging signs in disability employment: A slow but positive trajectory
Generative AI: Uncovering its environmental and social costs
Lower access to air conditioning may increase need for emergency care for wildfire smoke exposure
Dangerous bacterial biofilms have a natural enemy
Food study launched examining bone health of women 60 years and older
CDC awards $1.25M to engineers retooling mine production and safety
Using AI to uncover hospital patients’ long COVID care needs
$1.9M NIH grant will allow researchers to explore how copper kills bacteria
New fossil discovery sheds light on the early evolution of animal nervous systems
A battle of rafts: How molecular dynamics in CAR T cells explain their cancer-killing behavior
Study shows how plant roots access deeper soils in search of water
Study reveals cost differences between Medicare Advantage and traditional Medicare patients in cancer drugs
‘What is that?’ UCalgary scientists explain white patch that appears near northern lights
How many children use Tik Tok against the rules? Most, study finds
Scientists find out why aphasia patients lose the ability to talk about the past and future
Tickling the nerves: Why crime content is popular
Intelligent fight: AI enhances cervical cancer detection
Breakthrough study reveals the secrets behind cordierite’s anomalous thermal expansion
Patient-reported influence of sociopolitical issues on post-Dobbs vasectomy decisions
Radon exposure and gestational diabetes
EMBARGOED UNTIL 1600 GMT, FRIDAY 10 JANUARY 2025: Northumbria space physicist honoured by Royal Astronomical Society
Medicare rules may reduce prescription steering
Red light linked to lowered risk of blood clots
[Press-News.org] How cells boost gene expressionResearch team at Göttingen University discovers important function of antisense non-coding RNA