(Press-News.org) Newly announced research by Royal Ontario Museum (ROM) examining greenhouse gas emissions from the drying lake bed of Great Salt Lake, Utah, calculates that 4.1 million tons of carbon dioxide and other greenhouse gases were released in 2020. This research suggests that drying lake beds are an overlooked but potentially significant source of greenhouse gases, which may further increase due to climate change. These results were announced in the paper, “A desiccating saline lake bed is a significant source of anthropogenic greenhouse gas emissions,” published in the journal One Earth.
“Human-caused desiccation of Great Salt Lake is exposing huge areas of lake bed and releasing massive quantities of greenhouse gases into the atmosphere,” said Soren Brothers, who led this research and is ROM’s Allan and Helaine Shiff Curator of Climate Change. “The significance of lake desiccation as a driver of climate change needs to be addressed in greater detail and considered in climate change mitigation and watershed planning.”
From year to year, Great Salt Lake’s water level varies, largely depending on the volume of meltwater that flows into the lake from the surrounding mountains — from record highs in the 1980s to a record low in 2022. However, it is human-related consumption by agriculture, industry, and municipal uses, that consume ever-increasing amounts of freshwater that, over the years, has depleted the lake. Elsewhere around the world, these same competing uses for water are having a significant impact on lake levels. As iconic saline lakes such as the Aral Sea, Lake Urmia, the Caspian Sea, and Great Salt Lake dry up, they not only destroy critical habitat for biodiversity and create air quality conditions that deteriorate human health, but they also accelerate climate change as newly exposed sediments emit carbon dioxide and methane.
The research team measured carbon dioxide and methane emissions from the exposed sediments of Great Salt Lake, Utah, from April to November 2020, and compared them with aquatic emissions estimates to determine the anthropogenic greenhouse gas emissions associated with desiccation. Calculations based on this sampling indicate the lake bed emitted 4.1 million tons of greenhouse gases to the atmosphere, primarily (94%) as carbon dioxide, constituting an approximately 7% increase to Utah’s human-caused greenhouse gas emissions.
Fieldwork was conducted while Soren Brothers was Assistant Professor of Limnology at Utah State University, and lead author, Melissa Cobo, was a master’s student at USU. Co-author Tobias Goldhammer is a collaborating researcher at the Leibniz Institute for Freshwater Research (IGB Institute) in Berlin, Germany. Measurements of carbon dioxide and methane gases were made every two weeks from the dried-up lake bed using a portable greenhouse gas analyzer attached to a closed chamber. Seven sites at one location at the south end of the lake were visited repeatedly over the course of the year, and another three locations were sampled during an intensive three-day campaign to determine spatial variability across the lake, which at 1,700 square miles (4,400 square kilometres) is the largest saline lake in the western hemisphere. As methane is 28 times more powerful a greenhouse gas than carbon dioxide, the global warming impact of these emissions was calculated as “carbon dioxide equivalents” to account for the greater impact of methane. Ultimately, these data indicated that greenhouse gas emissions from the dried lake bed were strongly and positively related to warm temperatures, even at sites that have been exposed for over two decades. To determine whether the lake historically would have been a significant source of greenhouse gases, the team carried out measurements of near-shore greenhouse gas emissions from the lake, as well as analyzing water chemistry collected by the team and government data sets. Together, these analyses showed that the original lake was not likely a significant source of greenhouse gases to the atmosphere, making the dried-up lake bed a novel driver of atmospheric warming.
As climate change exacerbates drought in arid regions, desiccation of rivers and lakes may be contributing to climate change feedback loops and should be considered in assessments of global greenhouse gas output as well as reduction policies and efforts.
END
Royal Ontario Museum scientist identifies Great Salt Lake as a significant source of greenhouse gas emissions
Desiccating salt lakes identified as underappreciated sources contributing to climate change
2024-07-25
ELSE PRESS RELEASES FROM THIS DATE:
Provision of stroke care services by community disadvantage status
2024-07-25
About The Study: Hospitals in communities with the greatest level of socioeconomic disadvantage had the lowest likelihood of becoming stroke certified while hospitals in the most advantaged communities had the highest likelihood in this cohort study. These findings suggest that there is a need to support hospitals in disadvantaged communities to obtain stroke certification as a way to reduce stroke disparities.
Corresponding Author: To contact the corresponding author, Renee Y. Hsia, M.D., M.Sc., email renee.hsia@ucsf.edu.
To access the embargoed study: Visit our For The Media website at this link ...
Bilateral mastectomy and breast cancer mortality
2024-07-25
About The Study: This cohort study indicates that the risk of dying of breast cancer increases substantially after experiencing a contralateral breast cancer. Women with breast cancer treated with bilateral mastectomy had a greatly diminished risk of contralateral breast cancer; however, they experienced similar mortality rates as patients treated with lumpectomy or unilateral mastectomy.
Corresponding Author: To contact the corresponding author, Steven A. Narod, M.D., email steven.narod@wchospital.ca.
To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/
(doi:10.1001/jamaoncol.2024.2212)
Editor’s ...
Antisense oligonucleotide treatment shows promise in treating Parkinson's disease progression
2024-07-25
TMDU researchers demonstrate proof of concept of antisense nucleic acid therapy to prevent the spread of α-synuclein pathologies in synucleinopathies.
Tokyo, Japan – Parkinson’s disease (PD), as well as many other neurodegenerative disorders, has shown a link between the abnormal aggregation of a protein called α-synuclein (aSyn) and neuronal death. These aggregates, known as Lewy bodies and Lewy neurites depending on their subcellular localization, can spread by continuously causing normal endogenous aSyn to misfold. The complex nature of this aggregation process poses significant challenges ...
Intelligent engineering: AI transforms spatial arrangement of hydropower underground facilities
2024-07-25
Designing the spatial arrangement of underground powerhouses involves numerous complex parameters and boundaries, requiring frequent reference to various cases and specifications. Traditional methods struggle to efficiently retrieve this information, leading to suboptimal designs and extended project timelines. Due to these challenges, there is a pressing need for a more intelligent and efficient approach to streamline the design process, enhance accuracy, and improve project management in hydropower engineering.
Researchers from Tianjin University, in collaboration with PowerChina Kunming Engineering Corporation Limited and other ...
Unlocking new potential in solar tech: dimethyl acridine enhances perovskite solar cells
2024-07-25
Perovskite solar cells (PSCs) are highly regarded for their exceptional performance and straightforward fabrication. However, traditional hole transport layers (HTLs) like Poly (triarylamine) (PTAA), Nickel Oxide (NiOx), and poly (3,4-ethylenedioxythiophene)-poly (styrenesulfonate) (PEDOT) have inherent limitations that impede efficiency and stability. These materials often suffer from issues such as hydrophobicity, high reactivity, and acidity, which negatively affect the overall performance of PSCs. Due to these challenges, there is a pressing ...
Harnessing blue energy: advanced nanofluidic membranes boost aquatic energy conversion efficiency
2024-07-25
To achieve carbon neutrality, advancements in energy conversion and storage technologies are essential. Current aqueous energy devices suffer from performance limitations due to the trade-off between permeability and selectivity in permselective membranes. This trade-off hampers the efficiency of energy conversion and storage systems, necessitating the development of membranes that can balance these properties effectively. Due to these challenges, further research is required to explore innovative membrane structures that can enhance the performance of energy conversion and storage devices.
A research team from Tsinghua University has published a study (DOI: 10.26599/EMD.2024.9370041) ...
Unlocking solar efficiency: a leap in perovskite solar cell technology
2024-07-25
Perovskite solar cells (PSCs) are celebrated for their exceptional photovoltaic performance and affordability. However, the high cost of charge transport materials remains a major obstacle to their commercialization. Conventional materials like 2,2',7,7'-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (Spiro-OMeTAD), are expensive and complex to produce. Therefore, developing low-cost, efficient alternatives is essential to make PSCs more economically viable. Addressing these issues is crucial for advancing solar technology and achieving broader adoption. Hence, this study focuses ...
An effective strategy to inhibit grain coarsening: Construction of multi-element co-segregated grain boundary complexion
2024-07-25
To date, ceramic scientists have devised various strategies to impede grain coarsening. The utilization of nano-sized precursor powder can not only facilitate the densification process, but also yields bulk ceramics with reduced grain sizes compared with micron-sized precursor powder. Rapid sintering by passes the low-temperature surface diffusion stage and directly enters the high-temperature sintering stage through rapid heating, rendering it an effective way to inhibit grain coarsening. However, these aforementioned strategies fail to prevent coarsening during the application of nano-ceramics in medium- ...
Insilico releases AI-powered hardware platform, PandaOmics Box for on-premise drug discovery and personalized medicine research
2024-07-25
The development of innovative medicines is an expensive, time-consuming and risky business. On average, it usually takes at least a decade and billions of dollars to bring a new drug from project initiation to approval. Identifying effective targets and conducting biological analysis is the first step in the process and remains a top priority in drug development.
To facilitate for maximum data privacy and data security, Insilico Medicine ("Insilico"), developed a hardware platform, PandaOmics Box, that does not require Internet access and allows for on-premise biological analytics, target identification, biomarker ...
RSNA makes strides in narrowing radiology gender gap
2024-07-25
OAK BROOK, Ill. – The radiology gender gap is decreasing, but there remains work to be done, according to an editorial published today in RadioGraphics, a journal of the Radiological Society of North America (RSNA).
In 2022, nearly half of residents and fellows in Accreditation Council for Graduate Medical Education
(ACGME)–accredited programs were female. However, less than 27% of active diagnostic radiologists and only 10% of active interventional radiologists are female. Within the 48 largest medical specialty groups, diagnostic radiology ranks 41st and ...
LAST 30 PRESS RELEASES:
New tablet shows promise for the control and elimination of intestinal worms
Project to redesign clinical trials for neurologic conditions for underserved populations funded with $2.9M grant to UTHealth Houston
Depression – discovering faster which treatment will work best for which individual
Breakthrough study reveals unexpected cause of winter ozone pollution
nTIDE January 2025 Jobs Report: Encouraging signs in disability employment: A slow but positive trajectory
Generative AI: Uncovering its environmental and social costs
Lower access to air conditioning may increase need for emergency care for wildfire smoke exposure
Dangerous bacterial biofilms have a natural enemy
Food study launched examining bone health of women 60 years and older
CDC awards $1.25M to engineers retooling mine production and safety
Using AI to uncover hospital patients’ long COVID care needs
$1.9M NIH grant will allow researchers to explore how copper kills bacteria
New fossil discovery sheds light on the early evolution of animal nervous systems
A battle of rafts: How molecular dynamics in CAR T cells explain their cancer-killing behavior
Study shows how plant roots access deeper soils in search of water
Study reveals cost differences between Medicare Advantage and traditional Medicare patients in cancer drugs
‘What is that?’ UCalgary scientists explain white patch that appears near northern lights
How many children use Tik Tok against the rules? Most, study finds
Scientists find out why aphasia patients lose the ability to talk about the past and future
Tickling the nerves: Why crime content is popular
Intelligent fight: AI enhances cervical cancer detection
Breakthrough study reveals the secrets behind cordierite’s anomalous thermal expansion
Patient-reported influence of sociopolitical issues on post-Dobbs vasectomy decisions
Radon exposure and gestational diabetes
EMBARGOED UNTIL 1600 GMT, FRIDAY 10 JANUARY 2025: Northumbria space physicist honoured by Royal Astronomical Society
Medicare rules may reduce prescription steering
Red light linked to lowered risk of blood clots
Menarini Group and Insilico Medicine enter a second exclusive global license agreement for an AI discovered preclinical asset targeting high unmet needs in oncology
Climate fee on food could effectively cut greenhouse gas emissions in agriculture while ensuring a social balance
Harnessing microwave flow reaction to convert biomass into useful sugars
[Press-News.org] Royal Ontario Museum scientist identifies Great Salt Lake as a significant source of greenhouse gas emissionsDesiccating salt lakes identified as underappreciated sources contributing to climate change