PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Seismic detectors measure soil moisture using traffic noise

2024-08-05
(Press-News.org)

Caltech researchers have developed a new method to measure soil moisture in the shallow subterranean region between the surface and underground aquifers. This region, called the vadose zone, is crucial for plants and crops to obtain water through their roots. However, measuring how this underground moisture fluctuates over time and between geographical regions has traditionally relied on satellite imaging, which only gives low-resolution averages and cannot penetrate below the surface. Additionally, moisture within the vadose zone changes rapidly—a thunderstorm can saturate a region that dries out a few days later.

The new method relies upon seismic technology that normally measures how the ground shakes during earthquakes. However, it can also detect the vibrations of human activity, like traffic. As these vibrations pass through the ground, they are slowed down by the presence of water—the more moisture, the slower the vibration moves. The new study measures the water content in the vadose zone through seismic rumblings from everyday traffic. 

The research is a collaboration between the laboratories of hydrologist Xiaojing (Ruby) Fu, assistant professor of mechanical and civil engineering; and seismologist Zhongwen Zhan, professor of geophysics. A paper describing the work appears in the journal Nature Communications on August 5.

The new method is based on a technique pioneered in the Zhan lab, called distributed acoustic sensing (DAS). With this technique, lasers are pointed into unused underground fiber-optic cables (like the kind that provides internet). As a seismic wave, or any kind of vibration, passes through the cable, the laser light bends and refracts. Measuring the wiggles in this laser light gives researchers information about the passing wave, making the 10-kilometer cable equivalent to a line of thousands of conventional seismic sensors.

In the wake of the 2019 magnitude 7.2 earthquake in Ridgecrest, California, Zhan set up a DAS array on a nearby cable to measure aftershocks. In collaboration with Fu, the team quickly realized that the array could also be used to measure how everyday underground vibrations change depending on soil water content. Over five years, the team collected data and created models to illustrate how moisture in the vadose zone varies over time. They found that during the historic drought in California from 2019 to 2022, moisture in the vadose zone decreased significantly at a rate of 0.25 meters per year, exceeding the mean average precipitation.

"From the top 20 meters of soil in the Ridgecrest region, we can extrapolate to the entire Mojave desert," says Yan Yang, a graduate student in geophysics and co-first author of the study. "Our rough estimation is that every year, the Mojave vadose zone loses an amount of water equivalent to the Hoover Dam. Over the drought years of 2019 through 2022, the vadose zone has been drier and drier."

The ability to measure vadose zone moisture in real time is crucial for managing water use and conservation efforts. Next, the team intends to deploy the technology in regions other than the desert.

"We know this method works really well for this particular site," Fu says. "Many other interesting regions with the same climate could have different hydrological processes, like central California, where farming operations withdraw water, but the region also receives snowmelt from the Sierra Nevada mountains."

Seismological instruments have never been used to measure soil moisture at such a large scale for such an extended and continuous timespan. The project was made possible through funding and support from Caltech's Resnick Sustainability Institute (RSI). 

“This is exactly the type of interdisciplinary, creative science that the Resnick Institute was designed to support, bringing together colleagues that otherwise wouldn’t have worked together, and in that collaboration develop new tools that can help measure and manage water availability more sustainably," says Neil Fromer, Executive Director of Programs with the Resnick Sustainability Institute.

The paper is titled "Fiber-optic seismic sensing of vadose zone soil moisture dynamics." Zhichao Shen (PhD '22), now of Woods Hole Oceanographic Institution, is a co-first author of the paper with Yang. In addition to Fu and Zhan, co-authors are Kyra H. Adams of the Jet Propulsion Laboratory, which Caltech manages for NASA; and Caltech DAS scientist Ettore Biondi. Funding was provided by the National Science Foundation and the RSI.

END



ELSE PRESS RELEASES FROM THIS DATE:

State-level, out-of-pocket insulin caps do not substantially increase utilization, study finds

2024-08-05
AURORA, Colo. (August 5, 2024) – In a first-of-its-kind study, a cohort of researchers, led by the University of Colorado Anschutz Medical Campus, evaluated the effects of state-level insulin out-of-pocket costs across states and payers and over time. The team found that state-level caps on insulin out-of-pocket costs do not significantly increase insulin claims for patients with Type 1 or patients using insulin to manage Type 2 diabetes. Study results could help inform policies aimed at better delivering cost-capped insulin to patients struggling with insulin affordability. Approximately ...

Preventing Parkinson’s disease may lie in seaweed antioxidants

Preventing Parkinson’s disease may lie in seaweed antioxidants
2024-08-05
Parkinson’s disease is a neurodegenerative disease caused by the loss of neurons that produce dopamine, a neurotransmitter involved in motor control and cognitive function. As the global population ages, the number of Parkinson's disease patients is rapidly increasing. Parkinson's disease is induced by neuronal damage due to excessive production of reactive oxygen species. Suppression of reactive oxygen species generation is essential because it is fatal to dopaminergic neurons that manage dopamine neurotransmitters. ...

Streetlights running all night makes leaves so tough that insects can’t eat them, threatening the food chain

2024-08-05
Light pollution disrupts circadian rhythms and ecosystems worldwide – but for plants, dependent on light for photosynthesis, its effects could be profound. Now scientists writing in Frontiers in Plant Science have found that exposure to high levels of artificial light at night makes tree leaves grow tougher and harder for insects to eat, threatening urban food chains. “We noticed that, compared to natural ecosystems, tree leaves in most urban ecosystems generally show little sign of insect damage. We were curious as to why,” said corresponding author Dr Shuang Zhang of the Chinese Academy of Sciences. “Here we show that in ...

Upfront mental health supports for men with prostate cancer

2024-08-04
Mental health screenings must be incorporated in routine prostate cancer diagnoses say University of South Australia researchers. The call follows new research that shows men need more supports both during and immediately after a diagnosis of prostate cancer.   Funded by Movember, the UniSA study tracked the scale and timing of mental health issues among 13,693 South Australian men with prostate cancer, finding that 15% of prostate cancer patients began mental health medications directly after a prostate cancer diagnosis, with 6% seeking help from mental health ...

Strengthening global regulatory capacity for equitable access to vaccines in public health emergencies

2024-08-03
WASHINGTON – Three high-impact steps could be taken by global health leaders to reshape the global regulatory framework and help address the pressing need for equitable access to diagnostics, therapeutics, and vaccines during public health emergencies, say a Georgetown global health law expert and a medical student. In their “Perspective” published today in the New England Journal of Medicine, Georgetown School of Health professor Sam Halabi, JD, and George O’Hara, a Georgetown medical student and David E. Rogers Student ...

Sex chromosomes may reduce “sexual conflict” during evolution

Sex chromosomes may reduce “sexual conflict” during evolution
2024-08-03
Tokyo, Japan – Researchers from Tokyo Metropolitan University have taken a big step in solving the mystery around why animals evolve sex chromosomes. It had long been proposed that sex chromosomes evolve to reduce “sexual conflict,” the evolution of features which are sub-optimal for either sex. By using fruit flies, the team showed that genes on newly formed neo-sex chromosomes in fruit flies tend to evolve “sex-biased genes” which give sex-specific phenotypes.   Chromosomes are neatly packaged bundles of DNA that carry all the genetic material of an organism. While prokaryotes ...

A blueprint for building the future: Eco-friendly 3D concrete printing

A blueprint for building the future: Eco-friendly 3D concrete printing
2024-08-02
A research team led by engineers at the University of Virginia School of Engineering and Applied Science is the first to explore how an emerging plant-based material, cellulose nanofibrils, could amplify the benefits of 3D-printed concrete technology. “The improvements we saw on both printability and mechanical measures suggest that incorporating cellulose nanofibrils in commercial printable materials could lead to more resilient and eco-friendly construction practices sooner rather than later,” said Osman E. Ozbulut, a professor in the Department of Civil and Environmental ...

A Bronze Age technology could aid the switch to clean energy

2024-08-02
Technology with roots going back to the Bronze Age may offer a fast and inexpensive solution to help achieve the United Nations climate goal of net zero emissions by 2050, according to recent Stanford-led research in PNAS Nexus. The technology involves assembling heat-absorbing bricks in an insulated container, where they can store heat generated by solar or wind power for later use at the temperatures required for industrial processes. The heat can then be released when needed by passing air through channels in the stacks of “firebricks,” thus allowing cement, steel, glass, and paper factories to run on renewable energy even when wind and sunshine ...

What researchers know about the genetic complexity of schizophrenia, to date

What researchers know about the genetic complexity of schizophrenia, to date
2024-08-02
Patrick Sullivan, MD, FRANZCP, the Yeargan Distinguished Professor of Psychiatry and Genetics at the UNC School of Medicine, and researchers at the Karolinska Institutet in Stockholm, Sweden, have developed a comprehensive outline of the genetics of schizophrenia. The review was published in Nature Reviews Neuroscience. Schizophrenia is a neuropsychiatric disorder featuring recurrent episodes of psychosis – such as hallucinations, delusions, and disorganized thinking – with many patients developing apathy, social withdrawal, ...

New study highlights scale and impact of long COVID

2024-08-02
In a new review paper, researchers from the Universities of Arizona, Oxford and Leeds analyzed dozens of previous studies into long COVID to examine the number and range of people affected, the underlying mechanisms of disease, the many symptoms that patients develop, and current and future treatments. Long COVID, also known as Post-COVID-19 condition, is generally defined as symptoms persisting for three months or more after acute COVID-19. The condition can affect and damage many organ systems, leading to severe ...

LAST 30 PRESS RELEASES:

The Lancet: Without immediate action nearly 260 million people in the USA predicted to have overweight or obesity by 2050

Diabetes medication may be effective in helping people drink less alcohol

US over 40s could live extra 5 years if they were all as active as top 25% of population

Limit hospital emissions by using short AI prompts - study

UT Health San Antonio ranks at the top 5% globally among universities for clinical medicine research

Fayetteville police positive about partnership with social workers

Optical biosensor rapidly detects monkeypox virus

New drug targets for Alzheimer’s identified from cerebrospinal fluid

Neuro-oncology experts reveal how to use AI to improve brain cancer diagnosis, monitoring, treatment

Argonne to explore novel ways to fight cancer and transform vaccine discovery with over $21 million from ARPA-H

Firefighters exposed to chemicals linked with breast cancer

Addressing the rural mental health crisis via telehealth

Standardized autism screening during pediatric well visits identified more, younger children with high likelihood for autism diagnosis

Researchers shed light on skin tone bias in breast cancer imaging

Study finds humidity diminishes daytime cooling gains in urban green spaces

Tennessee RiverLine secures $500,000 Appalachian Regional Commission Grant for river experience planning and design standards

AI tool ‘sees’ cancer gene signatures in biopsy images

Answer ALS releases world's largest ALS patient-based iPSC and bio data repository

2024 Joseph A. Johnson Award Goes to Johns Hopkins University Assistant Professor Danielle Speller

Slow editing of protein blueprints leads to cell death

Industrial air pollution triggers ice formation in clouds, reducing cloud cover and boosting snowfall

Emerging alternatives to reduce animal testing show promise

Presenting Evo – a model for decoding and designing genetic sequences

Global plastic waste set to double by 2050, but new study offers blueprint for significant reductions

Industrial snow: Factories trigger local snowfall by freezing clouds

Backyard birds learn from their new neighbors when moving house

New study in Science finds that just four global policies could eliminate more than 90% of plastic waste and 30% of linked carbon emissions by 2050

Breakthrough in capturing 'hot' CO2 from industrial exhaust

New discovery enables gene therapy for muscular dystrophies, other disorders

Anti-anxiety and hallucination-like effects of psychedelics mediated by distinct neural circuits

[Press-News.org] Seismic detectors measure soil moisture using traffic noise