PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Single nucleosomes tracked in live cells during cell division using super-resolution microscopy

Single nucleosomes tracked in live cells during cell division using super-resolution microscopy
2024-08-23
(Press-News.org)

Individual cells divide through a process called mitosis, during which the cell’s copied DNA is separated between two resulting daughter cells. Despite recent advances in cell biology, the mechanism by which DNA condenses during mitosis is still poorly understood. Researchers recently tracked small stretches of DNA wound around histone proteins, called nucleosomes, to better characterize nucleosome behavior during cell division.

DNA is organized as chromatin, which are dynamic structures comprised of DNA, RNA, and proteins that regulate the accessibility of genes for expression and the overall configuration of genetic material in the cell. Histone proteins, for example, are positively charged proteins that bind to negatively charged DNA. DNA wraps around these histone proteins to form nucleosomes, which help condense nearly six feet of human genomic DNA into a nucleus only 10 micrometers (1 x 10-6 m) across.

During mitosis, DNA condenses before being divided between two daughter cells. A protein complex called condensins is involved in assembling the condensed chromosomes. However, researchers are still unsure how cells achieve chromosome assembly during cell division. To address this, a team of researchers from the National Institute of Genetics in Mishima, Japan, part of the Research Organization of Information and Systems (ROIS), used single-nucleosome imaging to reveal the factors that contribute to the organization and compaction of chromosomes during mitosis in living cells (Movie). 

The team published the study on August 25 in Nature Communications.

DOI: https://doi.org/10.1038/s41467-024-51454-y

“Mitotic chromosome assembly is an essential process for transmitting replicated chromosomes to two daughter cells during cell division. While protein factors like condensins play key roles in this process, it is unclear how nucleosomes, the building blocks of chromatin, behave during chromosome assembly and how condensins act on nucleosomes to organize chromosomes. To study these points, we tracked the movement of individual nucleosomes during cell division in living human cells using super-resolution microscope,” said Kazuhiro Maeshima, professor at the National Institute of Genetics and SOKENDAI (the Graduate University for Advanced Studies) in Mishima, Japan.

The team observed that nucleosomes are much more constrained during mitosis compared to cells in interphase. Nucleosomes were most constrained when chromosomes were being moved to opposite poles of the cell during anaphase, a specific phase of cell division. These constraints were loosened during telophase, the last phase of cell division, when chromosome decompaction begins.

The team also performed condensin-depletion experiments to investigate the constraining process during mitosis. They found that depleting condensins caused abnormal chromosome shapes and increased nucleosome motion. This observation supports a model of chromosome organization in which condensins form loops to constrain nucleosomes. Importantly, Yuji Sakai from the Yokohama City University was able to recapitulate their observations using computational modeling (Movie).

“Our findings revealed that as chromosomes are assembled during cell division, nucleosome movement becomes increasingly restricted. Condensins function like ‘molecular crosslinkers,’ holding nucleosomes in place to organize the chromosomes. Additionally, interactions between nucleosomes, facilitated by the tails of histone proteins, help further compact the chromosomes (Figure),” said Kayo Hibino from the National Institute of Genetics and SOKENDAI.

The team’s computational modeling and the lack of condensins at the periphery of chromosomes suggest that other constraining factors may contribute to chromosome condensation during mitosis. By reducing the positive charge on histone proteins with the reagent trichostatin A (TSA), researchers observed increased nucleosome movement (Figure), similar to the results of condensin depletion experiments.

Overall, the team found that condensins are responsible for constraining nucleosomes around a chromosome axis during mitosis through loop formation, and that nucleosome-nucleosome interactions via histone tails contribute to global chromosome condensation (Figure). Further research is required to determine exactly how condensins form DNA loops and how nucleosome-nucleosome interactions and loop formation interact to assemble chromosomes.

Additional contributors to this research include Katsuhiko Minami, Masa A. Shimazoe from the Genome Dynamics Laboratory at the National Institute of Genetics and the Graduate Institute for Advanced Studies at SOKENDAI, both in Mishima, Japan; Sachiko Tamura from the Genome Dynamics Laboratory at the National Institute of Genetics; Masatoshi Takagi from the Cellular Dynamics Laboratory at the RIKEN Cluster for Pioneering Research in Wako, Japan and the Laboratory for Cell Function Dynamics at the RIKEN Center for Brain Science in Wako, Japan; Toyoaki Natsume from the Graduate Institute for Advanced Studies at SOKENDAI, the Molecular Cell Engineering Laboratory at the National Institute of Genetics in Mishima, Japan and the Research Center for Genome & Medical Sciences at the Tokyo Metropolitan Institute of Medical Science in Tokyo, Japan; Masato T. Kanemaki from the Graduate Institute for Advanced Studies at SOKENDAI, the Molecular Cell Engineering Laboratory at the National Institute of Genetics in Mishima, Japan and the Department of Biological Science at The University of Tokyo in Tokyo, Japan; and Naoko Imamoto from the Cellular Dynamics Laboratory at the RIKEN Cluster for Pioneering Research and the Graduate School of Medical Safety Management at Jikei University of Health Care Sciences in Osaka, Japan.

 

###

About National Institute of Genetics (NIG)

National Institute of Genetics (NIG) was established to carry out broad and comprehensive research in genetics. NIG contributes to the development of academic research as one of the inter-university research institutes constituting the Research Organization of Information and Systems (ROIS).
 

About the Research Organization of Information and Systems (ROIS)

ROIS is a parent organization of four national institutes (National Institute of Polar Research, National Institute of Informatics, the Institute of Statistical Mathematics and National Institute of Genetics) and the Joint Support-Center for Data Science Research. It is ROIS's mission to promote integrated, cutting-edge research that goes beyond the barriers of these institutions, in addition to facilitating their research activities, as members of inter-university research institutes.

 

END


[Attachments] See images for this press release:
Single nucleosomes tracked in live cells during cell division using super-resolution microscopy Single nucleosomes tracked in live cells during cell division using super-resolution microscopy 2

ELSE PRESS RELEASES FROM THIS DATE:

Slow down in China’s methane emission growth

Slow down in China’s methane emission growth
2024-08-23
Methane is a potent greenhouse gas. Since the Industrial Revolution, atmospheric methane concentrations have nearly doubled, with its radiative forcing accounting for one-third of all greenhouse gases. As one of the world's largest methane emitters, China made a clear commitment as early as 2007 to "strive to control the growth rate of methane emissions." The country's 12th, 13th, and 14th Five-Year Plans all proposed measures to control methane emissions. In 2023, China released the "Methane Emission Control Action ...

Socioeconomics shape children’s connection to nature more than where they live

2024-08-23
The income and education levels of a child’s environment determine their relationship to nature, not whether they live in a city or the countryside. This is the finding of a new study conducted by researchers at Lund University, Sweden. The results run counter to the assumption that growing up in the countryside automatically increases our connection to nature, and yet the study also shows that nature close to home increases children’s well-being. There is a general concern that, with urbanisation, people have lost contact with nature. According to research, less contact ...

The higher the environmental stress, the lower the resistance to global change

The higher the environmental stress, the lower the resistance to global change
2024-08-23
An international study led by Institute of Natural Resources and Agrobiology of Seville (IRNAS-CSIC), of the Spanish National Research Council (CISC), has shown that as the number of global change factors increases, terrestrial ecosystems become more sensitive to the impacts of global change. The results, published in the prestigious journal Nature Geoscience, show that the resistance of our ecosystems to global change decreases significantly as the number of environmental stressors increases, especially when this stress is sustained over time. This is the conclusion reached by the Biodiversity and Ecosystem Functioning ...

Intestinal parasite could hold key to scar-free wound healing, study suggests

Intestinal parasite could hold key to scar-free wound healing, study suggests
2024-08-23
Researchers at Rutgers University in New Jersey have discovered that a protein produced by parasitic worms in the gut enhances wound healing in mice. The study, to be published August 23 in the journal Life Science Alliance (LSA), reveals that applying the protein to skin wounds speeds up wound closure, improves skin regeneration, and inhibits the formation of scar tissue. Whether the protein can be harnessed to enhance wound healing in human patients remains to be seen. Skin wounds must be rapidly closed in order to prevent infection, but rapid wound closure can favor the development of scar tissue instead of properly regenerated skin. The balance between scarring ...

Breakthroughs in prostate cancer: New insights into biomarkers and probes

Breakthroughs in prostate cancer: New insights into biomarkers and probes
2024-08-23
In a recent comprehensive review published in Cyborg Bionic Systems, researchers led by Keyi Li from the General Hospital of Northern Theater Command in Shenyang, along with international collaborators, detail significant advances in the identification and application of biomarkers for prostate cancer (PCa). This critical insight is pivotal as prostate cancer remains one of the most common malignancies among men globally, emphasizing the urgent need for effective diagnostic and therapeutic strategies. Prostate cancer is characterized by a multitude of molecular aberrations that complicate its early ...

New approach for profiling complex dynamics at the single-molecule level

New approach for profiling complex dynamics at the single-molecule level
2024-08-23
A team of researchers led by Professor Sebastian Deindl at Uppsala University has developed a pioneering method that vastly improves the ability to observe and analyse complex biological processes at the single-molecule level. Their work is set to be published in the upcoming issue of the journal Science. “With our new technique, we can now extend single-molecule biophysics to the genome scale. This advance is expected to significantly deepen our understanding of how nucleic-acid interacting proteins function in ...

Single 5-nm quantum dot detection via microtoroid resonator photothermal microscopy

Single 5-nm quantum dot detection via microtoroid resonator photothermal microscopy
2024-08-23
The detection of individual particles and molecules has opened new horizons in analytical chemistry, cellular imaging, nanomaterials, and biomedical diagnostics. Traditional single-molecule detection methods rely heavily on fluorescence techniques, which require labeling of the target molecules. In contrast, photothermal microscopy has emerged as a promising label-free, non-invasive imaging technique. This method measures localized variations in the refractive index of a sample's surroundings, resulting from light absorption by sample components, which induces temperature changes in the surrounding region. Whispering ...

Alzheimer’s drug may slow down cognitive decline in dementia with Lewy bodies

2024-08-23
Dementia with Lewy bodies is a type of dementia that is similar to both Alzheimer’s disease and Parkinson’s disease but studies on long-term treatments are lacking. A new study from Karolinska Institutet in Sweden, published in Alzheimer’s & Dementia: The Journal of the Alzheimer's Association, highlights the potential cognitive benefits of cholinesterase inhibitor treatment. Lewy body disease, which includes dementia with Lewy bodies (DLB) and Parkinson’s disease with and without dementia, is the second most common neurodegenerative disorder, following Alzheimer’s disease. DLB accounts for approximately ...

Researchers demonstrate metasurfaces that control thermal radiation in unprecedented ways

Researchers demonstrate metasurfaces that control thermal radiation in unprecedented ways
2024-08-23
NEW YORK, August 23, 2024 —  In a groundbreaking advancement, researchers with the Advanced Science Research Center at the CUNY Graduate Center (CUNY ASRC) have experimentally demonstrated that metasurfaces (two-dimensional materials structured at the nanoscale) can precisely control the optical properties of thermal radiation generated within the metasurface itself. This pioneering work, published in Nature Nanotechnology, paves the way for creating custom light sources with unprecedented capabilities, ...

New images reveal global air quality trends

New images reveal global air quality trends
2024-08-23
University of Leeds News Embargoed until 23 August 10:00 BST A selection of AQ Stripes graphic images are available here   The global concentrations of one of the main air pollutants known to affect human health have been graphically illustrated for the first time by a team of scientists. The Air Quality Stripes which were created by the University of Leeds, the University of Edinburgh, North Carolina State University, and the UK Met Office, starkly contrast the significant improvements in air quality across much of Europe with the alarming deterioration in parts ...

LAST 30 PRESS RELEASES:

Duke-NUS scientists develop novel plug-and-play test to evaluate T cell immunotherapy effectiveness

Compound metalens achieves distortion-free imaging with wide field of view

Age on the molecular level: showing changes through proteins

Label distribution similarity-based noise correction for crowdsourcing

The Lancet: Without immediate action nearly 260 million people in the USA predicted to have overweight or obesity by 2050

Diabetes medication may be effective in helping people drink less alcohol

US over 40s could live extra 5 years if they were all as active as top 25% of population

Limit hospital emissions by using short AI prompts - study

UT Health San Antonio ranks at the top 5% globally among universities for clinical medicine research

Fayetteville police positive about partnership with social workers

Optical biosensor rapidly detects monkeypox virus

New drug targets for Alzheimer’s identified from cerebrospinal fluid

Neuro-oncology experts reveal how to use AI to improve brain cancer diagnosis, monitoring, treatment

Argonne to explore novel ways to fight cancer and transform vaccine discovery with over $21 million from ARPA-H

Firefighters exposed to chemicals linked with breast cancer

Addressing the rural mental health crisis via telehealth

Standardized autism screening during pediatric well visits identified more, younger children with high likelihood for autism diagnosis

Researchers shed light on skin tone bias in breast cancer imaging

Study finds humidity diminishes daytime cooling gains in urban green spaces

Tennessee RiverLine secures $500,000 Appalachian Regional Commission Grant for river experience planning and design standards

AI tool ‘sees’ cancer gene signatures in biopsy images

Answer ALS releases world's largest ALS patient-based iPSC and bio data repository

2024 Joseph A. Johnson Award Goes to Johns Hopkins University Assistant Professor Danielle Speller

Slow editing of protein blueprints leads to cell death

Industrial air pollution triggers ice formation in clouds, reducing cloud cover and boosting snowfall

Emerging alternatives to reduce animal testing show promise

Presenting Evo – a model for decoding and designing genetic sequences

Global plastic waste set to double by 2050, but new study offers blueprint for significant reductions

Industrial snow: Factories trigger local snowfall by freezing clouds

Backyard birds learn from their new neighbors when moving house

[Press-News.org] Single nucleosomes tracked in live cells during cell division using super-resolution microscopy