PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Atoms on the edge

Physicists capture images of ultracold atoms flowing freely, without friction, in an exotic “edge state.”

Atoms on the edge
2024-09-06
(Press-News.org)

Typically, electrons are free agents that can move through most metals in any direction. When they encounter an obstacle, the charged particles experience friction and scatter randomly like colliding billiard balls. 

But in certain exotic materials, electrons can appear to flow with single-minded purpose. In these materials, electrons may become locked to the material’s edge and flow in one direction, like ants marching single-file along a blanket’s boundary. In this rare “edge state,” electrons can flow without friction, gliding effortlessly around obstacles as they stick to their perimeter-focused flow. Unlike in a superconductor, where all electrons in a material flow without resistance, the current carried by edge modes occurs only at a material’s boundary.
 

Now MIT physicists have directly observed edge states in a cloud of ultracold atoms. For the first time, the team has captured images of atoms flowing along a boundary without resistance, even as obstacles are placed in their path. The results, which appear in Nature Physics, could help physicists manipulate electrons to flow without friction in materials that could enable super-efficient, lossless transmission of energy and data. 

“You could imagine making little pieces of a suitable material and putting it inside future devices, so electrons could shuttle along the edges and between different parts of your circuit without any loss,” says study co-author Richard Fletcher, assistant professor of physics at MIT. “I would stress though that, for us, the beauty is seeing with your own eyes physics which is absolutely incredible but usually hidden away in materials and unable to be viewed directly.”

The study’s co-authors at MIT include graduate students Ruixiao Yao and Sungjae Chi, former graduate students Biswaroop Mukherjee PhD ’20 and Airlia Shaffer PhD ’23, along with Martin Zwierlein, the Thomas A. Frank Professor of Physics. The co-authors are all members of MIT’s Research Laboratory of Electronics and the MIT-Harvard Center for Ultracold Atoms.

Forever on the edge

Physicists first invoked the idea of edge states to explain a curious phenomenon, known today as the Quantum Hall effect, which scientists first observed in 1980, in experiments with layered materials, where electrons were confined to two dimensions. These experiments were performed in ultracold conditions, and under a magnetic field. When scientists tried to send a current through these materials, they observed that electrons did not flow straight through the material, but instead accumulated on one side, in precise quantum portions.

To try and explain this strange phenomenon, physicists came up with the idea that these Hall currents are carried by edge states. They proposed that, under a magnetic field, electrons in an applied current could be deflected to the edges of a material, where they would flow and accumulate in a way that might explain the initial observations.


“The way charge flows under a magnetic field suggests there must be edge modes,” Fletcher says. “But to actually see them is quite a special thing because these states occur over femtoseconds, and across fractions of a nanometer, which is incredibly difficult to capture.”

Rather than try and catch electrons in an edge state, Fletcher and his colleagues realized they might be able to recreate the same physics in a larger and more observable system. The team has been studying the behavior of ultracold atoms in a carefully designed setup that mimics the physics of electrons under a magnetic field. 

“In our setup, the same physics occurs in atoms, but over milliseconds and microns,” Zwierlein explains. “That means that we can take images and watch the atoms crawl essentially forever along the edge of the system.”

A spinning world

In their new study, the team worked with a cloud of about 1 million sodium atoms, which they corralled in a laser-controlled trap, and cooled to nanokelvin temperatures. They then manipulated the trap to spin the atoms around, much like riders on an amusement park Gravitron. 

“The trap is trying to pull the atoms inward, but there’s centrifugal force that tries to pull them outward,” Fletcher explains. “The two forces balance each other, so if you’re an atom, you think you’re living in a flat space, even though your world is spinning. There’s also a third force, the Coriolis effect, such that if they try to move in a line, they get deflected. So these massive atoms now behave as if they were electrons living in a magnetic field.”

Into this manufactured reality, the researchers then introduced an “edge,” in the form of a ring of laser light, which formed a circular wall around the spinning atoms. As the team took images of the system, they observed that when the atoms encountered the ring of light, they flowed along its edge, in just one direction. 

“You can imagine these are like marbles that you’ve spun up really fast in a bowl, and they just keep going around and around the rim of the bowl,” Zwierlein offers. “There is no friction. There is no slowing down, and no atoms leaking or scattering into the rest of the system. There is just beautiful, coherent flow.”

“These atoms are flowing, free of friction, for hundreds of microns,” Fletcher adds. “To flow that long, without any scattering, is a type of physics you don’t normally see in ultracold atom systems.”

This effortless flow held up even when the researchers placed an obstacle in the atoms’ path, like a speed bump, in the form of a point of light, which they shone along the edge of the original laser ring. Even as they came upon this new obstacle, the atoms didn’t slow their flow or scatter away, but instead glided right past without feeling friction as they normally would. 

“We intentionally send in this big, repulsive green blob, and the atoms should bounce off it,” Fletcher says. “But instead what you see is that they magically find their way around it, go back to the wall, and continue on their merry way.”

The team’s observations in atoms document the same behavior that has been predicted to occur in electrons. Their results show that the setup of atoms is a reliable stand-in for studying how electrons would behave in edge states. 

“It’s a very clean realization of a very beautiful piece of physics, and we can directly demonstrate the importance and reality of this edge,” Fletcher says. “A natural direction is to now introduce more obstacles and interactions into the system, where things become more unclear as to what to expect.”

This research was supported, in part, by the National Science Foundation.

###

Written by Jennifer Chu, MIT News

Paper: “Observation of chiral edge transport in a rapidly-rotating quantum gas”

https://www.nature.com/articles/s41567-024-02617-7

END


[Attachments] See images for this press release:
Atoms on the edge Atoms on the edge 2

ELSE PRESS RELEASES FROM THIS DATE:

Postdoc takes multipronged approach to muon detection

Postdoc takes multipronged approach to muon detection
2024-09-06
NEWPORT NEWS, VA – When Debaditya Biswas was a high school student in India, his math teacher, Dr. Satyabrata Das, sparked his interest in physics. “Before I joined his class, I was really not sure what I was going to do in life,” said Biswas, a postdoctoral research associate at Virginia Tech. “He revealed the beauty of science to me.” Now, as the 2024 Jefferson Science Associates (JSA) Postdoctoral Prize winner, Biswas hopes to reveal a new method for the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility to detect muons. By themselves, muons aren’t actually that difficult for physicists to detect. They are a type ...

Mathematical proof: Five satellites needed for precise navigation

2024-09-06
As a rule, GPS indicates our location with an accuracy of just a few meters. But we have all experienced situations where the possible error increases to a few hundred meters or the indicated location is simply wrong. One reason for this can be the small number of satellites with line-of-sight contact to the navigation device or unfavorable relative alignment of the satellites. How does GPS work? GPS satellites are equipped with an extremely accurate atomic clock and know their positions at all times. They continually transmit the time and their location using radio waves. A mobile phone ...

Scalable, multi-functional device lays groundwork for advanced quantum applications

Scalable, multi-functional device lays groundwork for advanced quantum applications
2024-09-06
Researchers have demonstrated a new multi-functional device that could help advance the scalability of solid-state color centers, enabling them to be used in larger and more complex quantum computers and networks. As efficient photon-spin interfaces, solid-state color centers are promising candidates for qubit nodes — essential units for storing and processing quantum information. Solid-state color centers are point defects that can absorb and emit light at specific wavelengths. To be useful in real-world quantum applications, they must be optically addressable in a fast and controllable manner while also allowing ...

Falling for financial scams? It may signal early Alzheimer’s disease

2024-09-06
Older adults who are more vulnerable to financial scams may have brain changes linked to a higher risk of Alzheimer’s disease, according to a first-of-its-kind study led by researchers at the USC Dornsife College of Letters, Arts and Sciences. Nearly 7 million Americans are living with Alzheimer’s disease, the fifth leading cause of death among those 65 and older. The disease will carry an estimated $360 billion in health care costs this year alone, according to the Alzheimer’s Association.  Researchers led by Duke Han, professor ...

Integrating MRI and OCT for new insights into brain microstructure

Integrating MRI and OCT for new insights into brain microstructure
2024-09-06
In a new study, researchers compared the orientations of nerve fibers in a human brainstem using two advanced imaging techniques: diffusion magnetic resonance imaging (dMRI)-based tractography and polarization sensitive optical coherence tomography (PS-OCT). The findings could aid in combining these techniques, which each offer unique advantages, to advance our understanding of the brain’s microstructure and help inform new techniques for early diagnosis of various brain disorders. Isabella Aguilera-Cuenca from ...

Designing a normative neuroimaging library to support diagnosis of traumatic brain injury

Designing a normative neuroimaging library to support diagnosis of traumatic brain injury
2024-09-06
With recent advances in neuroimaging, moving from qualitative to quantitative outputs, an understanding is needed of what normal data look like to be able to apply these advances to diagnosis and outcomes prediction in traumatic brain injury (TBI). A new article in the peer-reviewed Journal of Neurotrauma introduces the large Normative Neuroimaging Library (NLL) to the research community. Click here to read the article now. The American College of Radiology and Cohen Veterans Bioscience created a reference ...

Department of Energy announces $68 million in funding for artificial intelligence for scientific research

2024-09-06
WASHINGTON, D.C. - The use of Artificial Intelligence (AI) in scientific research is a top priority at the Department of Energy (DOE), which today announced $68 million in funding for 11 multi-institution projects, comprising 43 awards. The funded projects will develop new ways to create foundation models, which are machine learning or deep learning models that can be used across a wide range of applications because they’re trained on broad data. Foundation models are a key building block of AI. Those models will be used in computational science, to automate workflow in laboratories, to accelerate scientific programming, and much more. The possibilities ...

DOE, ORNL announce opportunity to define future of high-performance computing

2024-09-06
The Department of Energy’s (DOE) Office of Science today announced a new research and development opportunity led by Oak Ridge National Laboratory (ORNL) to advance technologies and drive new capabilities for future supercomputers. This industry research program worth $23 million, called New Frontiers, will initiate partnerships with multiple companies to accelerate the R&D of critical technologies with renewed emphasis on energy efficiency for the next generation of post-exascale computing in the 2029 and beyond time frame. “There is a growing consensus that urgent action is needed to address an array of bottlenecks ...

Molecular simulations, supercomputing lead to energy-saving biomaterials breakthrough

2024-09-06
A team led by scientists at the Department of Energy’s Oak Ridge National Laboratory identified and successfully demonstrated a new method to process a plant-based material called nanocellulose that reduced energy needs by a whopping 21%. The approach was discovered using molecular simulations run on the lab’s supercomputers, followed by pilot testing and analysis.  The method, leveraging a solvent of sodium hydroxide and urea in water, can significantly lower the production cost of nanocellulosic fiber — a strong, lightweight biomaterial ideal as a ...

Low-impact yoga and exercise found to help older women manage urinary incontinence

2024-09-06
Older women struggling with urinary incontinence can benefit from regular, low-impact exercise, with yoga as well as stretching and strengthening showing benefits in a new study published Aug. 27 in Annals of Internal Medicine. The research, led by scientists at Stanford Medicine and the University of California, San Francisco, is part of a larger effort to identify low-risk, low-cost ways to treat one of the most common health problems women face as they age. After 12 weeks of a low-impact yoga program, study participants had about 65% fewer episodes of incontinence. Women in a control group doing stretching and strengthening exercises ...

LAST 30 PRESS RELEASES:

Students who use dating apps take more risks with their sexual health

Breakthrough idea for CCU technology commercialization from 'carbon cycle of the earth'

Keck Hospital of USC earns an ‘A’ Hospital Safety Grade from The Leapfrog Group

Depression research pioneer Dr. Philip Gold maps disease's full-body impact

Rapid growth of global wildland-urban interface associated with wildfire risk, study shows

Generation of rat offspring from ovarian oocytes by Cross-species transplantation

Duke-NUS scientists develop novel plug-and-play test to evaluate T cell immunotherapy effectiveness

Compound metalens achieves distortion-free imaging with wide field of view

Age on the molecular level: showing changes through proteins

Label distribution similarity-based noise correction for crowdsourcing

The Lancet: Without immediate action nearly 260 million people in the USA predicted to have overweight or obesity by 2050

Diabetes medication may be effective in helping people drink less alcohol

US over 40s could live extra 5 years if they were all as active as top 25% of population

Limit hospital emissions by using short AI prompts - study

UT Health San Antonio ranks at the top 5% globally among universities for clinical medicine research

Fayetteville police positive about partnership with social workers

Optical biosensor rapidly detects monkeypox virus

New drug targets for Alzheimer’s identified from cerebrospinal fluid

Neuro-oncology experts reveal how to use AI to improve brain cancer diagnosis, monitoring, treatment

Argonne to explore novel ways to fight cancer and transform vaccine discovery with over $21 million from ARPA-H

Firefighters exposed to chemicals linked with breast cancer

Addressing the rural mental health crisis via telehealth

Standardized autism screening during pediatric well visits identified more, younger children with high likelihood for autism diagnosis

Researchers shed light on skin tone bias in breast cancer imaging

Study finds humidity diminishes daytime cooling gains in urban green spaces

Tennessee RiverLine secures $500,000 Appalachian Regional Commission Grant for river experience planning and design standards

AI tool ‘sees’ cancer gene signatures in biopsy images

Answer ALS releases world's largest ALS patient-based iPSC and bio data repository

2024 Joseph A. Johnson Award Goes to Johns Hopkins University Assistant Professor Danielle Speller

Slow editing of protein blueprints leads to cell death

[Press-News.org] Atoms on the edge
Physicists capture images of ultracold atoms flowing freely, without friction, in an exotic “edge state.”