PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Complexity of tumors revealed in 3D

Maps of tumor ‘neighborhoods’ open door to future treatment strategies

Complexity of tumors revealed in 3D
2024-10-30
(Press-News.org)

A new analysis led by researchers at Washington University School of Medicine in St. Louis has revealed detailed 3D maps of the internal structures of multiple tumor types. These cancer atlases reveal how different tumor cells — and the cells of a tumor’s surrounding environment — are organized, in 3D, and how that organization changes when a tumor spreads to other organs.

The detailed findings offer scientists valuable blueprints of tumors that could lead to new approaches to therapy and spark a new era in the field of cancer biology, according to the researchers.

The study is part of a group of 12 papers published Oct. 30 in the Nature suite of journals by members of the Human Tumor Atlas Network, a research consortium funded by the National Cancer Institute (NCI) of the National Institutes of Health (NIH). The 3D analysis — published in Nature — includes detailed data about breast, colorectal, pancreas, kidney, uterine and bile duct cancers.

The last decade of cancer research has been defined by tremendous advances in understanding the activities of cells in a tumor’s environment — both the cancer itself and its support cells, including on a single-cell level. The new study begins to reveal not just what each cell is up to, but also where each cell is located in the intact tumor and how each interacts with its neighboring cells, whether those cells are next door, down the street or in a completely different neighborhood.

This new information could help scientists understand how tumors spread or develop treatment resistance, to name a few intensive areas of ongoing study.

“These 3D maps of tumors are important because they finally let us see what, until now, we have only been able to infer about tumor structures and their complexity,” said co-senior author Li Ding, PhD, the David English Smith Professor of Medicine. “We understood that cancer cells, immune cells and structural cells were all present in the tumor, sometimes protecting the cancer from chemotherapy and immune system attack, but now we can actually see those battle lines. We now have the ability to see how regions of the tumor differ in 3D space and how the behavior changes in response to therapy or when the tumor spreads to other organs. These studies have opened a new era in cancer research with the potential to transform the way we understand and treat cancer in the future.”

The study is led by Ding, also a research member of Siteman Cancer Center, based at Barnes-Jewish Hospital and WashU Medicine; and her fellow co-senior authors Feng Chen, PhD, a professor of medicine; Ryan C. Fields, MD, the Kim and Tim Eberlein Distinguished Professor; William E. Gillanders, MD, a professor of surgery, all of WashU Medicine; and Benjamin J. Raphael, PhD, of Princeton University.

3D organization of tumor neighborhoods

In general, the researchers found that tumors had higher metabolic activity — that is, they burned more fuel — in their cores and more immune system activity on their edges. They also found that a tumor can contain multiple neighborhoods with different genetic mutations driving the tumor’s growth. These neighborhoods are being appreciated for how they lead to treatment response and resistance in various cancer types. This suggests different targeted treatments may be needed to address key mutations in different neighborhoods.

“This understanding of 3D cancer metabolism will affect how our current treatments work, and sometimes don’t work, and will lead to development of novel treatments in cancer,” said Fields, who treats patients at Siteman. “It really is transformative.”

In addition, some tumor neighborhoods can have high immune cell activity — known as hot regions. The same tumor also can have so-called cold regions that do not have much, if any, immune activity. Hot regions typically respond well to immunotherapies, but cold regions do not, possibly helping to explain why some tumors appear responsive to immunotherapies at first and then develop resistance. If various mutation profiles as well as cold and hot neighborhoods can be identified, it presents the possibility of designing treatment strategies that could be effective against all neighborhoods within the same tumor.

The researchers — including co-first authors, Chia-Kuei (Simon) Mo and Jingxian (Clara) Liu, both graduate students in Ding’s lab — also found large variation in how deeply immune cells had infiltrated the various tumors and where different immune cell types, such as T cells or macrophages, assembled. Some metastatic tumor samples showed the cancer breaking through immune cell boundaries to continue the invasion of healthy tissue, perhaps illustrating a phenomenon called immune cell exhaustion, in which the immune system is overwhelmed by an aggressive cancer and can no longer contain its growth.

“If we can see exhausted T cells inside a tumor, we could potentially activate those T cells with a checkpoint inhibitor or other immunotherapies,” Ding said. “But if we don’t see them, we will know certain immunotherapies won’t work. These tumor maps can help us predict treatment resistance. We have never been able to talk this way about tumors before — being able to see that immune cells are present in the tumor, suggesting opportunities to exploit them for treatments.”

WashU Medicine researchers led two more studies as part of this package of publications. One, appearing in Nature Cancer and co-led by Ding and Gillanders, provides a detailed analysis of breast cancer, identifying how different types of breast tumors originate from different cell types. The research team also found that T cell exhaustion was common in an aggressive tumor known as triple-negative breast cancer. Knowledge of the “cell of origin” and the immune landscape in breast cancer could help guide future treatment strategies.

The other paper, appearing in Nature Methods and co-led by Ding, of WashU Medicine, and Raphael, of Princeton, describes new methods for 3D analyses of tumors, including those used in the study of the six tumor types that appeared in Nature.

###

Mo C, Liu J, Chen S, Storrs E, Targino da Costa AL, Houston A, Wendl MC, Jayasinghe RG, Iglesia MD, Ma C, Herndon JM, Southard-Smith AN, Liu X, Mudd J, Karpova A, Shinkle A, Goedegebuure SP, Abdelsaher ATMA, Bo P, Fulghum L, Livingston S, Balaban M, Hill A, Ippolito JE, Thorsson V, Held JM, Hagemann IS, Kim EH, Bayguinov PO, Kim AH, Mullen MM, Shoghi KI, Ju T, Reimers MA, Weimholt C, Kang L, Puram SV, Veis DJ, Pachynski R, Fuh KC, Chheda MG, Gillanders WE, Fields RC, Raphael BJ, Chen F, Ding L. Tumor evolution and microenvironment interactions in 2D and 3D space precancer. Nature. Oct. 30, 2024.

This work was supported by the National Institutes of Health (NIH), grant numbers U2CCA233303, U54AG075934, U24CA210972, R01NS107833, R01NS117149, R01HG009711, R01CA260112, U24CA209837, K12CA167540, U24CA248453 and U24CA264027; and the Damon Runyon Cancer Research Foundation.

Iglesia MD, Jayasinghe RG, Chen S, Terekhanova NV, Herndon JM, Storrs E, Karpova A, Zhou DC, Naser Al Deen N, Shinkle AT, Lu RJ, Caravan W, Houston A, Zhao Y, Sato K, Lal P, Street C, Martins Rodrigues R, Southard-Smith AN, Targino da Costa AL, Zhu H, Mo C, Crowson L, Fulton RS, Wyczalkowski MA, Fronick CC, Fulton LA, Sun H, Davies SR, Appelbaum EL, Chasnoff SE, Carmody M, Brooks C, Liu R, Wendl MC, Oh C, Bender D, Cruchaga C, Harari O, Bredemeyer A, Lavine K, Bose R, Margenthaler J, Held JM, Achilefu S, Ademuyiwa F, Aft R, Ma C, Colditz GA, Ju T, Oh ST, Fitzpatrick J, Hwang ES, Shoghi KI, Chheda MG, Veis DJ,  Chen F, Fields RC, Gillanders WE, Ding L. Differential chromatin accessibility and transcriptional dynamics define breast cancer subtypes and their lineages. Nature Cancer. Oct. 30, 2024.

This work was supported by the National Institutes of Health (NIH), grant numbers U2CCA233303, U24CA211006, U24CA209837, R01HG009711; the Centene Corporation, contract number P19-00559, through the Washington University-Centene ARCH Personalized Medicine Initiative.

Ma C, Balaban M, Liu J, Chen S, Wilson MJ, Sun CH, Ding L, Raphael BJ. Inferring allele-specific copy number aberrations and tumor phylogeography from spatially resolved transcriptomics. Nature Methods. Oct. 30, 2024.

This work was supported by the National Institutes of Health (NIH), grant numbers U24CA248453, U24CA264027, U2CCA233303, U54AG075934, U24CA210972, R01HG009711 and R01CA260112; and the Damon Runyon Cancer Research Foundation.

This content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

About Washington University School of Medicine

WashU Medicine is a global leader in academic medicine, including biomedical research, patient care and educational programs with 2,900 faculty. Its National Institutes of Health (NIH) research funding portfolio is the second largest among U.S. medical schools and has grown 56% in the last seven years. Together with institutional investment, WashU Medicine commits well over $1 billion annually to basic and clinical research innovation and training. Its faculty practice is consistently within the top five in the country, with more than 1,900 faculty physicians practicing at 130 locations and who are also the medical staffs of Barnes-Jewish and St. Louis Children’s hospitals of BJC HealthCare. WashU Medicine has a storied history in MD/PhD training, recently dedicated $100 million to scholarships and curriculum renewal for its medical students, and is home to top-notch training programs in every medical subspecialty as well as physical therapy, occupational therapy, and audiology and communications sciences.

END


[Attachments] See images for this press release:
Complexity of tumors revealed in 3D Complexity of tumors revealed in 3D 2 Complexity of tumors revealed in 3D 3

ELSE PRESS RELEASES FROM THIS DATE:

Into the great wide open: How steppe pastoralist groups formed and transformed over time

Into the great wide open: How steppe pastoralist groups formed and transformed over time
2024-10-30
The wider Caucasus region, between the Black and the Caspian Seas, connects Europe, the Near East and Asia. It displays a huge geographic, ecological, economic, cultural, and linguistic range today, from the steppe zone in the north, the Caucasus mountains in the center, to the highlands of today’s Armenia, Georgia, Azerbaijan and Iran in the south. This diversity was no different in the past, where the archaeological record attests to many different influences from many surrounding regions. “It is precisely this interface of different eco-geographic features ...

Determining precise timing of cellular growth to understand the origins of cancer

2024-10-30
Cancers are diseases of abnormal cellular growth, and although many are treatable or even curable, their origins are not necessarily clear. Understanding the precise timing of cellular events—as cells transition from normal to cancerous conditions—is key to uncovering new treatments or diagnostic opportunities. Scientists from Vanderbilt University, led by Mirazul Islam, a graduate student mentored by Professor of Cell and Developmental Biology Ken Lau and Professor of Medicine Robert Coffey, have laid the groundwork for understanding and predicting the natural transition between precancers and cancer.  They showed that colorectal cancer is likely to ...

Healthy brains suppress inappropriate immune responses

2024-10-30
The brain constantly engages in dialogue with the body’s immune system. Such communication appears aimed at ensuring a delicate balance between defending against injury and infection and guarding healthy tissue. Now, scientists at Washington University School of Medicine in St. Louis have revealed how the two strike a healthy balance. The study, in mice, found that fragments of immune-stimulating proteins – dubbed guardian peptides – are produced by the brain and spinal cord of the central nervous system to maintain ...

Large meltwater accumulation revealed inside Greenland Ice Sheet

Large meltwater accumulation revealed inside Greenland Ice Sheet
2024-10-30
A new study published in Nature unveils a surprising discovery: a substantial amount of meltwater is temporarily stored within the Greenland Ice Sheet during summer months. For the first time, an international group of researchers was able to quantify meltwater with positioning data. The finding challenges current models of how ice sheets contribute to global sea level rise. The Greenland Ice Sheet is currently the largest single contributor to global sea-level rise, with the potential to raise the mean sea level by up to seven meters if it fully melts. While ...

Ancient DNA brings to life history of the iconic aurochs, whose tale is intertwined with climate change and human culture

Ancient DNA brings to life history of the iconic aurochs, whose tale is intertwined with climate change and human culture
2024-10-30
Geneticists from Trinity College Dublin, together with an international team of researchers, have deciphered the prehistory of aurochs – the animals that were the focus of some of the most iconic early human art – by analysing 38 genomes harvested from bones dating across 50 millennia and stretching from Siberia to Britain.  The aurochs roamed in Europe, Asia and Africa for hundreds of thousands of years. Adorned as paintings on many a cave wall, their domestication to create cattle gave us a harnessed source of muscle, meat and milk. Such ...

Reversing environmental decline: Lessons from African communities

Reversing environmental decline: Lessons from African communities
2024-10-30
In rural Africa, where livelihoods are often tied directly to the land, environmental degradation poses a critical threat to both ecosystems and people’s well-being. New research reveals ways to tackle the dual challenges of land degradation and poverty. In rural Africa, where livelihoods are often tied directly to the land, environmental degradation poses a critical threat to both ecosystems and people’s well-being. A new study co-authored by researchers at Stanford University and the French Agricultural Research Centre for International Development (CIRAD) analyzes how ...

'Black box' of stem cell transplants opened in world-first blood study

2024-10-30
For the first time, scientists have tracked what happens to stem cells decades after a transplant, lifting the lid on the procedure that has been a medical mystery for over 50 years. Insights could pave the way for new strategies in donor selection and transplant success, potentially leading to safer, more effective transplants.  Researchers from the Wellcome Sanger Institute and their collaborators at the University of Zurich were able to map the behaviour of stem cells in recipients’ bodies up to three decades post-transplant, ...

New pathway for sensing cold temperatures identified in rice

2024-10-30
A gene called COLD6 contributes to cold tolerance in rice, potentially offering a pathway to use molecular design to breed a rice variety with higher resistance to cold stress. This work appears October 30 in the Cell Press journal Molecular Cell. “Cold damage is a major challenge in rice production, and identifying key gene modules in signalling pathways is a crucial step in addressing this issue,” says senior study author Kang Chong of the Chinese Academy of Sciences. “Our research focused on uncovering the molecular mechanism behind crops’ response to cold stress. We hope to ...

Study identifies how ovarian cancer protects itself, paves way for improved immunotherapy approach

Study identifies how ovarian cancer protects itself, paves way for improved immunotherapy approach
2024-10-30
New York, NY [October 30, 2024]—Researchers at the Icahn School of Medicine at Mount Sinai have discovered a way that ovarian cancer tumors manipulate their environment to resist immunotherapy and identified a drug target that could overcome that resistance. The study, published in the October 30 online issue of Cell [DOI: 10.1016/j.cell.2024.10.006], used a cutting-edge spatial genomics technology and preclinical animal models, with tumor specimens from ovarian cancer patients further validating the findings. The researchers found that ovarian cancer cells produce a molecule called Interleukin-4 (IL-4), which is typically ...

State policies regulating law enforcement access to prescription drug monitoring program testosterone prescription data

2024-10-30
About The Study: This study found that testosterone prescription data through prescription drug monitoring programs was accessible to law enforcement without basic safeguards (such as a warrant or subpoena) in nearly half of states. The ease of access to this sensitive medical information raises privacy, care quality, and civil liberties concerns, especially amid the proliferation of gender-affirming care bans. Corresponding Author: To contact the corresponding author, Katie McCreedy, MPH, email mccreedy.k@northeastern.edu. To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/ (doi:10.1001/jama.2024.20035) Editor’s ...

LAST 30 PRESS RELEASES:

Large herbivores have lived in Yellowstone National Park for more than 2,000 years

Antarctic penguin colonies can be identified and tracked from tourists' photos, using a computer model to reconstruct the 3D scene

For patients with alcohol use disorder, exercise not only reduces alcohol dependence, but also improves mental and physical health, per systematic review

Bones from Tudor Mary Rose shipwreck suggest handedness might affect collarbone chemistry

Farewell frost! New surface prevents frost without heat

Similarities in brain development between marmosets and humans

Can we protect nerve cells from dying?

Why does Lake Geneva emit large quantities of CO2? UNIL scientists provide the answer and solve a scientific enigma

Double strike against blood cancer

Combining VR and non-invasive brain stimulation: a neurotechnology that boosts spatial memory without surgery

A rudimentary quantum network link between Dutch cities

Accounting for bias in medical data helps prevent AI from amplifying racial disparity

MD Anderson Research Highlights for October 30, 2024

Three Baycrest leaders named 2024 Canada’s Most Powerful Women: WXN’s Top 100 Award winners

Scientists uncover new mechanism in plant cold sensing

Study shows natural regrowth of tropical forests has immense potential to address environmental concerns

After a heart attack, the heart signals to the brain to increase sleep to promote healing

Complexity of tumors revealed in 3D

Into the great wide open: How steppe pastoralist groups formed and transformed over time

Determining precise timing of cellular growth to understand the origins of cancer

Healthy brains suppress inappropriate immune responses

Large meltwater accumulation revealed inside Greenland Ice Sheet

Ancient DNA brings to life history of the iconic aurochs, whose tale is intertwined with climate change and human culture

Reversing environmental decline: Lessons from African communities

'Black box' of stem cell transplants opened in world-first blood study

New pathway for sensing cold temperatures identified in rice

Study identifies how ovarian cancer protects itself, paves way for improved immunotherapy approach

State policies regulating law enforcement access to prescription drug monitoring program testosterone prescription data

Validation of the Kansas City Cardiomyopathy Questionnaire in patients with tricuspid regurgitation

New study shows combination therapy slows cognitive decline in at-risk populations

[Press-News.org] Complexity of tumors revealed in 3D
Maps of tumor ‘neighborhoods’ open door to future treatment strategies