PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Solving complex problems faster: Innovations in Ising machine technology

Researchers propose a novel method to make Ising machines more scalable, boosting their applicability in real-world combinatorial optimization problems

Solving complex problems faster: Innovations in Ising machine technology
2024-11-13
(Press-News.org)

Computers are essential for solving complex problems in fields, like scheduling, logistics, and route planning, but traditional computers struggle with large-scale combinatorial optimization, as they can’t efficiently process vast numbers of possibilities. To address this, researchers have explored specialized systems.

One such system is the Hopfield network, a significant artificial intelligence breakthrough from 1982, proven in 1985 to solve combinatorial optimization by representing solutions as energy levels and naturally finding the lowest energy, or optimal, solution. Building on similar ideas, Ising machines use the principles of magnetic spin to find efficient solutions by minimizing system energy through a process akin to annealing. However, a major challenge with Ising machines is their large circuit footprint, especially in fully connected systems where every spin interacts with others, complicating their scalability.

Fortunately, a research team from the Tokyo University of Science, Japan, has been working towards finding solutions to this problem related to Ising machines. In a recent study led by Professor Takayuki Kawahara, they reported an innovative method that can halve the number of interactions that need to be physically implemented. Their findings were published in the journal IEEE Access on October 01, 2024.

The proposed method focuses on visualizing the interactions between spins as a two-dimensional matrix, where each element represents the interaction between two specific spins. Since these interactions are ‘symmetric’ (i.e., the interaction between Spin 1 and Spin 2 is the same as that between Spin 2 and Spin 1), half of the interaction matrix is redundant and can be omitted—this concept has been around for several years. In 2020, Prof. Kawahara and colleagues presented a method to fold and rearrange the remaining half of the interaction matrix into a rectangle shape to minimize the circuit footprint. While this led to efficient parallel computations, the wiring required to read the interactions and update the spin values became more complex and harder to scale up.

In this study, the researchers proposed a different way of halving the interaction matrix that leads to better scalability in circuitry. They divided the matrix into four sections and halved each of these sections individually, alternatively preserving either the ‘top’ or ‘bottom’ halves of each submatrix. Then, they folded and rearranged the remaining elements into a rectangular shape, unlike the previous approach, which retained the regularity of its arrangement.

Leveraging this crucial detail, the researchers implemented a fully coupled Ising machine based on this technique on their previously developed custom circuit containing 16 field-programmable gate arrays (FPGAs). “Using the proposed approach, we were able to implement 384 spins on only eight FPGA chips. In other words, two independent and fully connected Ising machines could be implemented on the same board,” remarks Prof. Kawahara, “Using these machines, two classic combinatorial optimization problems were solved simultaneously—namely, the max-cut problem and four-color problem.” 

The performance of the circuit developed for this demo was astounding, especially when compared to how slow a conventional computer would be in the same situation. “We found that the performance ratio of two independent 384-spin fully coupled Ising machines was about 400 times better than simulating one Ising machine on a regular Core i7-4790 CPU to solve the two problems sequentially,” reports Kawahara, excited about the results.

In the future, these cutting-edge developments will pave the way to scalable Ising machines suitable for real-world applications such as faster molecular simulations to accelerate drug and materials discovery. Moreover, improving the efficiency of data centers and the electrical power grid is also feasible to use cases, which align well with global sustainability goals of reducing the carbon footprint of emerging technologies like electric vehicles and 5G/6G telecommunications. As innovations continue to unfold, scalable Ising machines may soon become invaluable tools across industries, transforming how we tackle some of the world's most complex optimization challenges.

 

***

 

Reference                     

DOI: 10.1109/ACCESS.2024.3471695

 

About The Tokyo University of Science
Tokyo University of Science (TUS) is a well-known and respected university, and the largest science-specialized private research university in Japan, with four campuses in central Tokyo and its suburbs and in Hokkaido. Established in 1881, the university has continually contributed to Japan's development in science through inculcating the love for science in researchers, technicians, and educators.

With a mission of “Creating science and technology for the harmonious development of nature, human beings, and society," TUS has undertaken a wide range of research from basic to applied science. TUS has embraced a multidisciplinary approach to research and undertaken intensive study in some of today's most vital fields. TUS is a meritocracy where the best in science is recognized and nurtured. It is the only private university in Japan that has produced a Nobel Prize winner and the only private university in Asia to produce Nobel Prize winners within the natural sciences field.

Website: https://www.tus.ac.jp/en/mediarelations/

 

About Professor Takayuki Kawahara from Tokyo University of Science
Dr.Takayuki Kawahara is a Professor in the Department of Electrical Engineering at Tokyo University of Science, Japan. He earned his Ph.D. from Kyushu University in 1993. With over 8,500 citations, Prof. Kawahara's current research is dedicated to sustainable electronics, with a specific focus on low-power AI devices and circuits, sensors, spin current applications, and quantum computing techniques. He has won several awards, including the 2014 IEICE Electronics Society Award and the Prize for Science and Technology (Development Category) at the FY2017 Commendation for Science and Technology by the Minister of Education, Culture, Sports, Science, and Technology of Japan.

 

Funding information
This work was supported in part by the Japan Society for the Promotion of Science (JSPS) KAKENHI under Grant 22H01559 and Grant 23K22829.

END


[Attachments] See images for this press release:
Solving complex problems faster: Innovations in Ising machine technology Solving complex problems faster: Innovations in Ising machine technology 2

ELSE PRESS RELEASES FROM THIS DATE:

Grief-specific cognitive behavioral therapy vs present-centered therapy

2024-11-13
About The Study: This randomized clinical trial demonstrates that cognitive behavioral therapy for prolonged grief was superior to present-centered therapy after treatment and at follow-up with regard to comorbid symptoms. Both treatments were shown to be effective and acceptable, showing the potential for dissemination and increasing patient choice.  Corresponding Author: To contact the corresponding author, Rita Rosner, PhD, email rita.rosner@ku.de. To access the embargoed study: Visit our For The Media website ...

New species discovered with refined DNA technology

New species discovered with refined DNA technology
2024-11-13
Sometimes plants are so similar to each other that the methods developed by 18th century scientist Carl Linnaeus for identifying species are not enough. In a thesis from the University of Gothenburg, completely new species of daisies have been discovered when analysed using modern DNA technology. There are currently estimated to be around 8.7 million different species on Earth, of which around 2.2 million are found in the oceans. Many species can be identified in the classical way, by their physical characteristics, the morphology. For over a decade, botanists and zoologists have also been using DNA sequencing to more accurately identify species. ...

C-PATH announces Gender Equitable Medicines for Parkinson's Disease (GEM-PD) initiative

2024-11-13
INFORMATION EMBARGOED UNTIL WEDNESDAY, NOV. 13, 2024, 7 a.m. ET   C-Path Announces Gender Equitable Medicines for Parkinson's Disease (GEM-PD) Initiative C-Path expands its worldwide leadership in accelerating drug development in neurology; seeks additional collaborators to broaden impact. TUCSON, Ariz., November 13, 2024 — Critical Path Institute (C-Path) today announced a landmark initiative, Gender Equitable Medicines for Parkinson's Disease (GEM-PD), dedicated to globally ...

Faster flowing glaciers could help predict nearby volcanic activity

2024-11-13
Glaciers that are within three miles of a volcano move nearly 50% quicker than average, a new study has found, which could help create early warning of future eruptions.   In a new article published in Communications Earth & Environment today, researchers from the University of Aberdeen, University of Birmingham and Manchester Metropolitan University analysed velocity data from 85% of the world’s approximately 217,000 glaciers. After controlling for factors such as climate, ice thickness and surface slope, the team found that glaciers near active volcanoes typically flowed 46% faster than other glaciers.  Glaciers ...

MIT engineers make converting CO2 into useful products more practical

MIT engineers make converting CO2 into useful products more practical
2024-11-13
As the world struggles to reduce greenhouse gas emissions, researchers are seeking practical, economical ways to capture carbon dioxide and convert it into useful products, such as transportation fuels, chemical feedstocks, or even building materials. But so far, such attempts have struggled to reach economic viability. New research by engineers at MIT could lead to rapid improvements in a variety of electrochemical systems that are under development to convert carbon dioxide into a valuable commodity. ...

Primary care professionals key to helping people achieve & maintain heart health

2024-11-13
Statement Highlights: A new scientific statement outlines the role of primary care professionals in helping their patients achieve Life’s Essential 8, the key measures for improving and maintaining cardiovascular health defined by the American Heart Association. The new statement highlights how primary care clinicians can help patients follow and maintain the Association’s Life’s Essential 8 health metrics for optimal cardiovascular health, which includes four health behaviors (diet, physical activity, nicotine exposure and sleep) and four health ...

Early detection, intensive treatment critical for high-risk patients with Kawasaki Disease

2024-11-13
Embargoed until 4:00 a.m. CT/5:00 a.m. ET Wed., Nov. 13, 2024 DALLAS, Nov. 13, 2024 — Advances in cardiac imaging techniques and risk categorization have led to improvements in diagnosis, initial treatment and long-term management of patients with Kawasaki Disease, according to a new scientific statement published today in the American Heart Association’s flagship, peer-reviewed journal Circulation. The new statement, “Update on Diagnosis and Management of Kawasaki Disease,” summarizes the data published since the 2017 American Heart Association Scientific Statement ...

A phase-transformable membrane for efficient gas separation could revolutionize industrial applications

A phase-transformable membrane for efficient gas separation could revolutionize industrial applications
2024-11-13
Industrial gas separation, essential for clean energy and environmental protection, demands efficiency and adaptability. Current materials, however, lack the flexibility to selectively separate gases like carbon dioxide (CO₂) and hydrogen (H₂) while remaining energy-efficient. Researchers at the Institute for Integrated Cell-Material Sciences (WPI-iCeMS) at Kyoto University and the Department of Chemical Engineering at National Taiwan University have developed a phase-transformable membrane that could meet these needs.   This innovative membrane design relies on a unique combination of metal-organic polyhedra (MOP) with polyethylene glycol (PEG) chains. “Traditional ...

From camera to lab: Dr. Etienne Sibille transforms brain aging and depression research

From camera to lab: Dr. Etienne Sibille transforms brain aging and depression research
2024-11-13
Toronto, Canada, November 13, 2024 - In science, the most fascinating breakthroughs often come from unexpected places. For Dr. Etienne Sibille, professor at the University of Toronto, and director of the Neurobiology of Depression and Aging program at CAMH, and co-founder and Chief Scientific Officer of Damona Pharmaceuticals, the path to revolutionizing mental health treatment began not in a laboratory, but through a camera lens in New York City.  "I grew up in France and went to medical school, but it was not for me. I was too restless and moved to ...

Depression rates in LGBTQIA+ students are three times higher than their peers, new research suggests

2024-11-13
The findings, which were published in the Journal of American College Health, uncover an alarming rise in depression rates among all higher education students in the United States, but especially among sexual and gender minorities. This population includes those who identified as lesbian, gay, bisexual, transgender, queer, questioning, intersex, asexual (LGBTQIA+), non-binary or gender non-conforming, and other identities.    “This study highlights the critical need for targeted interventions to support the mental health and well-being ...

LAST 30 PRESS RELEASES:

Major review highlights latest evidence on real-time test for blood – clotting in childbirth emergencies

Inspired by bacteria’s defense strategies

Research spotlight: Combination therapy shows promise for overcoming treatment resistance in glioblastoma

University of Houston co-leads $25 million NIH-funded grant to study the delay of nearsightedness in children

NRG Oncology PREDICT-RT study completes patient accrual, tests individualized concurrent therapy and radiation for high-risk prostate cancer

Taking aim at nearsightedness in kids before it’s diagnosed

With no prior training, dogs can infer how similar types of toys work, even when they don’t look alike

Three deadliest risk factors of a common liver disease identified in new study

Dogs can extend word meanings to new objects based on function, not appearance

Palaeontology: South American amber deposit ‘abuzz’ with ancient insects

Oral microbes linked to increased risk of pancreatic cancer

Soccer heading does most damage to brain area critical for cognition

US faces rising death toll from wildfire smoke, study finds

Scenario projections of COVID-19 burden in the US, 2024-2025

Disparities by race and ethnicity in percutaneous coronary intervention

Glioblastoma cells “unstick” from their neighbors to become more deadly

Oral bacterial and fungal microbiome and subsequent risk for pancreatic cancer

New light on toxicity of Bluefin tuna

Menopause drug reduces hot flashes by more than 70%, international clinical trial finds

FGF21 muscle hormone associated with slow ALS progression and extended survival

Hitting the right note: The healing power of music therapy in the cardiac ICU

Cardiovascular disease risk rises in Mexico, despite improved cholesterol control

Flexible optical touch sensor simultaneously pinpoints pressure strength and location

Achalasia diagnosis simplified to AI plus X-ray

PolyU scholars pioneer smart and sustainable personal cooling technologies to address global extreme heat

NIH grant aims for childhood vaccine against HIV

Menstrual cycle and long COVID: A relation confirmed

WMO report on global water resources: 2024 was characterized by both extreme drought and intense rainfall

New findings explain how a mutation in a cancer-related gen causes pulmonary fibrosis

Thermal trigger

[Press-News.org] Solving complex problems faster: Innovations in Ising machine technology
Researchers propose a novel method to make Ising machines more scalable, boosting their applicability in real-world combinatorial optimization problems