PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Generation of Terahertz complex vector light fields on a metasurface driven by surface waves

Generation of Terahertz complex vector light fields on a metasurface driven by surface waves
2025-02-07
(Press-News.org)

 

A new publication from Opto-Electronic Sciences; DOI   10.29026/oes.2025.240024, discusses generation of terahertz complex vector light fields on a metasurface driven by surface waves.

 

With the rapid development of information and communication technologies, especially in the context of 5G, 6G networks, artificial intelligence, and the Internet of Things, the development of on-chip optical control devices with high bandwidth, high speed, low power consumption, and miniaturization has become increasingly important. However, traditional optical devices often face issues such as large size, low efficiency, and limited control capabilities. Metasurfaces, as a new type of optical device, are composed of a series of ultra-thin subwavelength artificial atoms arranged in a specific manner, enabling unusual effects such as anomalous reflection/refraction, planar prisms, holographic imaging, and surface wave excitation. In particular, recent work has proposed using on-chip surface waves as an excitation source, employing metasurfaces to efficiently decouple surface waves and achieve wavefront control in free space, thus opening new avenues for on-chip optical applications. However, previous work has primarily focused on phase control, and achieving joint control of phase, amplitude, and polarization to realize more flexible light field control remains a significant challenge.

 

This paper proposes a general method for designing ultra-compact on-chip optical devices that can efficiently generate pre-designed complex wavefront vector beams (VOFs) under surface wave (SW) excitation, with experimental verification in the terahertz (THz) frequency range.

 

For reflective metasurface devices with linear geometric phase, when illuminated by linearly polarized light in the vertical direction, the scattered field will simultaneously contain both spin-related and spin-independent anomalous and normal modes (as shown in Fig. 1a). As the incident angle increases, one of the anomalous modes and normal modes, after being manipulated by the metasurface, both have their reflection angles gradually increase. When the incident wave is an on-chip surface wave, the mode "surviving" in free space is a specific circularly polarized light, and both the radiation angle and polarization state of this mode can be arbitrarily controlled by precisely designing the phase gradient of the metasurface (Fig. 1b, c).

 

Building on the above concepts, researchers have further proposed the idea of designing composite metasurfaces to radiate complex vector light fields. The traditional single "artificial atom" is expanded into a 2×2 "artificial molecule," where the different subunits (blue and purple) have independent rotation angles and directions. Under the illumination of surface waves, these subunits can simultaneously radiate left-handed circular polarization (LCP) and right-handed circular polarization (RCP) components. By controlling the local phase and polarization components through interference effects, specific wavefronts and polarization distributions of vector beams can be constructed on a macroscopic scale (Fig. 1d).

 

To achieve this concept, researchers have developed a universal design method that decomposes the target vector light field into a sum of different wave vectors and circular polarization basis vectors. Through the mapping relationship between the target total field and the artificial atoms, the design parameters of the composite metasurface are determined, ultimately completing the design of the prototype device (Fig. 2a). For example, the researchers developed a terahertz device that generates a radially polarized Bessel beam under surface wave excitation. Using full-wave simulation and near-field scanning, the light field morphology was demonstrated in different planes and polarization directions, showing excellent agreement, thereby verifying the device's outstanding performance (Fig. 2b-g). This research provides a new approach for achieving highly integrated on-chip terahertz devices, with broad application prospects in fields such as biosensing, high-speed communication, lidar, and augmented and virtual reality (AR/VR).

 

Keywords: surface waves / vector beam / multi-pixel metasurface / terahertz / ultrathin and high-efficiency

 

# # # # # #

 

The "Metamaterial Optical Field Control Team" at Fudan University is led by Professor Lei Zhou (Changjiang Scholar, Outstanding Young Scholar, and National Ten Thousand Talent Program), with strong support from core faculty members such as Professor Shulin Sun, Professor Qiong He, and Professor Shaojie Ma. The team is based at Fudan University’s State Key Laboratory of Applied Surface Physics, the Key Laboratory of Micro-Nano Photonic Structures of the Ministry of Education, the Shanghai Key Laboratory of Metasurface Optical Field Control, and the Shanghai Engineering Technology Research Center for Ultra-Precision Optical Manufacturing. The team has long been engaged in research on metamaterials, metasurfaces, and nanophotonics. The research group has published over 200 SCI papers in journals such as Nature Materials, Nano Letters, Advanced Optical Materials, and Light Science & Applications, with over 22,000 citations. More than 20 of their papers have been selected as ESI Highly Cited Papers. They have won several prestigious awards, including the 2019 National Natural Science Award (Second Class), the 2016 Shanghai Natural Science Award (First Class), and the 2012 China Optical Significant Achievement Award. The team is leading numerous research projects, such as the Innovative Research Group Project of the National Natural Science Foundation of China, the National Key R&D Program, and key projects from the National Natural Science Foundation of China. They have also organized multiple international conferences on metamaterials and have been invited to give over 300 plenary, keynote, and invited talks at international academic conferences.

# # # # # #

Opto-Electronic Science (OES) is a peer-reviewed, open access, interdisciplinary and international journal published by The Institute of Optics and Electronics, Chinese Academy of Sciences as a sister journal of Opto-Electronic Advances (OEA, IF=15.3). OES is dedicated to providing a professional platform to promote academic exchange and accelerate innovation. OES publishes articles, reviews, and letters of the fundamental breakthroughs in basic science of optics and optoelectronics.

# # # # # #

 

More information: https://www.oejournal.org/oes

Editorial Board: https://www.oejournal.org/oes/editorialboard/list

OES is available on OE journals (https://www.oejournal.org/oes/archive)

Submission of OES may be made using ScholarOne (https://mc03.manuscriptcentral.com/oes)

CN 51-1800/O4

ISSN 2097-0382

Contact Us: oes@ioe.ac.cn

Twitter: @OptoElectronAdv (https://twitter.com/OptoElectronAdv?lang=en)

WeChat: OE_Journal

# # # # # #

 

Wang Z, Pan WK, He Y et al. Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces. Opto-Electron Sci 4, 240024 (2025). doi: 10.29026/oes.2025.240024 

END


[Attachments] See images for this press release:
Generation of Terahertz complex vector light fields on a metasurface driven by surface waves Generation of Terahertz complex vector light fields on a metasurface driven by surface waves 2

ELSE PRESS RELEASES FROM THIS DATE:

Clot-busting meds may be effective up to 24 hours after initial stroke symptoms

2025-02-07
Research Highlights: In a randomized clinical trial in China, giving the clot-busting medication alteplase up to 24 hours after stroke symptoms first appeared increased the odds of better recovery by 50% compared to those who received standard antiplatelet treatment. The results might extend the time window for patient treatment worldwide, particularly in regions that lack access to advanced medical procedures. Note: The study featured in this news release is a research abstract. Abstracts presented at the American Heart ...

Texas Tech Lab plays key role in potential new pathway to fight viruses

2025-02-07
Five years removed from the COVID-19 outbreak, scientists around the world are still studying its effects and, more importantly, ways those effects can be mitigated in the future. An international team of researchers may have just found a critical clue in the quest, and a laboratory at Texas Tech University played a key role. The Ray Laboratory, led by Department of Biological Sciences Professor and Associate Chair David Ray, as part of a study on bat genomes published by the scientific journal Nature, helped identify the components of a genome in a specific species of bats that have shown more genetic adaptations in their immune systems than other animals. The study revealed that a gene ...

Multi-photon bionic skin realizes high-precision haptic visualization for reconstructive perception

Multi-photon bionic skin realizes high-precision haptic visualization for reconstructive perception
2025-02-07
  A new publication from Opto-Electronic Advances; DOI  10.29026/oea.2025.240152, discusses how multi-photon bionic skin realizes high-precision haptic visualization for reconstructive perception.   Human palm skin contains more than 20,000 tactile vesicles, depending on the tactile vesicles in the skin depth, activation threshold, trigger mode and other tactile signal pickup differences, as well as cross-synergistic mechanism between them, so that the skin can obtain different types of tactile signals. And then through the brain nerve center on the tactile signal “calculation” ...

Mitochondria may hold the key to curing diabetes

2025-02-07
Mitochondria are essential for generating energy that fuels cells and helps them function. Mitochondrial defects, however, are associated with the development of diseases such as type 2 diabetes. Patients who suffer from this disorder are unable to produce enough insulin or use the insulin produced by their pancreas to keep their blood sugar at normal levels. Several studies have shown that insulin-producing pancreatic β-cells of patients with diabetes have abnormal mitochondria and are unable to generate energy. Yet, these studies were unable to explain why the cells behaved this way. In a study published in Science, ...

Researchers explore ketogenic diet’s effects on bipolar disorder among teenagers, young adults

2025-02-07
UCLA Health is set to begin a multi-site pilot study to explore whether a ketogenic diet, when combined with mood stabilizing medications, helps stabilize mood symptoms in teenagers and young adults who have bipolar disorder. Preliminary research on the effects of a ketogenic diet in people with bipolar disorder have shown improvements in mood and in overall executive function, but these open trials have been limited to adults. This will be the first study conducted on the diet’s effects among youth and young adults with bipolar disorder. Set ...

From muscle to memory: new research uses clues from the body to understand signaling in the brain

From muscle to memory: new research uses clues from the body to understand signaling in the brain
2025-02-07
Our biceps and our brain cells may have more in common than previously thought. New research led by the Lippincott-Schwartz Lab shows that a network of subcellular structures similar to those responsible for propagating molecular signals that make muscles contract are also responsible for transmitting signals in the brain that may facilitate learning and memory. “Einstein said that when he uses his brain, it is like he is using a muscle, and in that respect, there is some parallel here,” says Janelia Senior Group Leader Jennifer Lippincott-Schwartz. “The same machinery is operating in both cases ...

New study uncovers key differences in allosteric regulation of cAMP receptor proteins in bacteria

2025-02-07
Washington, D.C. – A new study, “Identifying Allosteric Hotspots in Mycobacterium tuberculosis cAMP Receptor Protein” published in Biochemistry, provides key insights into how bacterial cAMP receptor proteins (CRPs) respond differently to the ubiquitous signaling molecule, cyclic AMP (cAMP). By comparing the allosteric regulation of Escherichia coli CRP (CRPEcoli) and Mycobacterium tuberculosis CRP (CRPMTB), researchers challenge the assumption that structural similarity predicts functional behavior in allosteric proteins.   This ...

Co-located cell types help drive aggressive brain tumors

2025-02-07
A type of aggressive, treatment-resistant brain tumor has a distinct population of immune cells that support its growth, according to new research led by investigators at the Johns Hopkins Kimmel Cancer Center Bloomberg~Kimmel Institute for Cancer Immunotherapy and the Johns Hopkins University School of Medicine. Searching for subtypes of immune cells seen only in the most serious, grade 4 brain tumors, called glioblastomas, and using a recently developed technology called spatial genomics, ...

Social media's double-edged sword: New study links both active and passive use to rising loneliness

2025-02-07
"The Epidemic of Loneliness: A Nine-Year Longitudinal Study of the Impact of Passive and Active Social Media Use on Loneliness" investigated how social media use impacts loneliness over time.  This eye-opening research suggests that the very platforms designed to bring us together contribute to an "epidemic of loneliness." The findings showed that both passive (PSMU) and active (ASMU) social media use were associated with increased feelings of loneliness over time. While passive social media use—like browsing without ...

An unexpected mechanism regulates the immune response during parasitic infections

An unexpected mechanism regulates the immune response during parasitic infections
2025-02-07
Researchers at the University of Liège (Belgium) have uncovered a previously unknown mechanism that regulates the immune response against parasites. During a parasitic infection, specific immune cells, known as virtual memory T cells (TVM), become activated and express a surface molecule called CD22, which prevents an excessive immune reaction. This discovery could help in better-controlling inflammation and improving immune responses to infections. Nearly a quarter of the world's population ...

LAST 30 PRESS RELEASES:

Rare bird skull from the age of dinosaurs helps illuminate avian evolution

Researchers find high levels of the industrial chemical BTMPS in fentanyl

Decoding fat tissue

Solar and electric-powered homes feel the effects of blackouts differently, according to new research from Stevens

Metal ion implantation and laser direct writing dance together: constructing never-fading physical colors on lithium niobate crystals

High-frequency enhanced ultrafast compressed photography technology (H-CAP) allows microscopic ultrafast movie to appear at a glance

Single-beam optical trap-based surface-enhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system

Removing large brain artery clot, chased with clot-buster shot may improve stroke outcomes

A highly sensitive laser gas sensor based on a four-prong quartz tuning fork

Generation of Terahertz complex vector light fields on a metasurface driven by surface waves

Clot-busting meds may be effective up to 24 hours after initial stroke symptoms

Texas Tech Lab plays key role in potential new pathway to fight viruses

Multi-photon bionic skin realizes high-precision haptic visualization for reconstructive perception

Mitochondria may hold the key to curing diabetes

Researchers explore ketogenic diet’s effects on bipolar disorder among teenagers, young adults

From muscle to memory: new research uses clues from the body to understand signaling in the brain

New study uncovers key differences in allosteric regulation of cAMP receptor proteins in bacteria

Co-located cell types help drive aggressive brain tumors

Social media's double-edged sword: New study links both active and passive use to rising loneliness

An unexpected mechanism regulates the immune response during parasitic infections

Scientists enhance understanding of dinoflagellate cyst dormancy

PREPSOIL promotes soil literacy through education

nTIDE February 2025 Jobs Report: Labor force participation rate for people with disabilities hits an all-time high

Temperamental stars are distorting our view of distant planets

DOE’s Office of Science is now Accepting Applications for Office of Science Graduate Student Research Awards

Twenty years on, biodiversity struggles to take root in restored wetlands

Do embedded counseling services in veterinary education work? A new study says “yes.”

Discovery of unexpected collagen structure could ‘reshape biomedical research’

Changes in US primary care access and capabilities during the COVID-19 pandemic

Cardiometabolic trajectories preceding dementia in community-dwelling older individuals

[Press-News.org] Generation of Terahertz complex vector light fields on a metasurface driven by surface waves