PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

UV light holds promise for energy-efficient desalination

UCR experiments offer pathway for solar solutions

2025-11-04
(Press-News.org) A team of UC Riverside researchers has uncovered a potential breakthrough in solar desalination that could reduce the need for energy-intensive saltwater treatment.

Led by Luat Vuong, an associate professor of mechanical engineering in UCR’s Marlan and Rosemary Bourns College of Engineering, the team has demonstrated for the first time how the highest frequencies of sunlight—specifically invisible ultraviolet (UV) light—can break the stubborn bonds between salt and water.

“To our knowledge, nobody else has yet articulated this deep UV channel for salt-water separation,” Vuong said. “UV light in the wavelength range of 300-400 nanometers is used for disinfection, but this deep UV channel around 200 nanometers is not well known. We may be the first to really think about how you can leverage it for desalination.”

While much work remains before practical applications are developed, the discovery provides a clear path for further research and innovation.

Published in ACS Applied Materials & Interfaces, the study by Vuong and her colleagues details how the team made a wick from aluminum nitride—a hard, white ceramic—to separate salt from water by harnessing specific light wavelengths that interact with salt water without heating the bulk liquid. Unlike traditional solar desalination methods, which rely on dark materials to absorb heat and boil water, Vuong’s approach could bypass the need for thermal processes altogether.

The experiments involved placing pairs of ceramic wicks in an enclosed chamber, with each allowed to equilibrate or adjust to similar environmental conditions. Under UV light, evaporation rates of salt water increased significantly compared to control samples kept in the dark or exposed to red, yellow, or infrared light.

“Aluminum nitride is well suited for emitting UV light due to its crystalline structure,” Vuong explained.

The material may be triggering a process called “photon upconversion,” in which low-energy photons combine into a single high-energy photon. That upconverted photon delivers a more powerful punch, potentially strong enough to break the salt-water bonds. If this upconversion process occurs without generating excess heat, which is yet to be determined, the approach could offer a non-photothermal alternative to traditional solar desalination systems that boil or heat salt water to produce vapor, which then condenses into fresh water. 

Such solar systems also could reduce the heavy electricity demands of reverse osmosis systems, which use high-pressure pumps to force salt water through membranes. The system could also address the concentrated reverse-osmosis brine waste, which is toxic to marine life when discharged into waterways.

Other potential applications for the wicking approach may be for other waste management processes, harvesting minerals in extreme environments, or replacing “swamp” coolers with salt water evaporation systems.

Still, Vuong emphasized that further research is needed before aluminum nitride-based solar desalination systems can be engineered for widespread use. 

“Other materials may be designed to be just as effective, but aluminum nitride is practical. It is inexpensive, widely available, non-toxic, highly hydrophilic, and durable,” Vuong said.

Click here for more information.
 

END


ELSE PRESS RELEASES FROM THIS DATE:

Scientists discover new way to shape what a stem cell becomes

2025-11-04
How do stem cells know what to become? Nearly three decades after scientists isolated the first human embryonic stem cells, researchers are still working hard to understand precisely how a single, undifferentiated cell can become any one of the roughly 200 cell types that make up the human body. A new study offers key insights, describing how cellular storage units known as “P bodies” heavily influence a cell’s fate. By manipulating P bodies, the scientists were able to efficiently create hard-to-develop cell types in the lab, including “germ cells” (the cells that precede sperm and egg) and “totipotent” cells, which can become ...

Global move towards plant-based diets could reshape farming jobs and reduce labor costs worldwide, Oxford study finds

2025-11-04
Key Points:  Shifting to more plant-based diets could reduce global agricultural labour needs by 5–28 per cent by 2030, the equivalent of 18–106 million full-time jobs.  The global rebalancing of food production could cut agricultural labour costs by US $290–995 billion each year, equal to around 0.2–0.6 per cent of global GDP.  Countries with livestock-heavy agriculture would see the biggest declines in labour demand, while others - especially lower-income nations - could need 18–56 million more ...

New framework helps balance conservation and development in cold regions

2025-11-03
Scientists have developed an innovative planning framework that could help protect fragile ecosystems in cold regions while supporting sustainable development. The study, published in Agricultural Ecology and Environment, introduces a new “connectivity–ecological risk–economic efficiency” (CRE) approach that integrates environmental, economic, and climatic factors into a single model for ecological security planning. Cold regions such as Northeast China’s Songhua River Basin are vital for ...

Tiny iron minerals hold the key to breaking down plastic additives

2025-11-03
A team of scientists has discovered that the crystal structure of naturally occurring iron minerals plays a crucial role in breaking down harmful chemical additives released from plastics. The findings could improve predictions of how these pollutants behave in the environment and guide strategies for reducing their long-term risks. The study, published in Environmental and Biogeochemical Processes, examined how three types of iron oxyhydroxide nanominerals, goethite, akaganeite, and lepidocrocite, catalyze the breakdown of organophosphate esters (OPEs). OPEs are ...

New study reveals source of rain is major factor behind drought risks for farmers

2025-11-03
A new University of California San Diego study uncovers a hidden driver of global crop vulnerability: the origin of rainfall itself.  Published in Nature Sustainability, the research traces atmospheric moisture back to its source—whether it evaporated from the ocean or from land surfaces such as soil, lakes and forests. When the sun heats these surfaces, water turns into vapor, rises into the atmosphere, and later falls again as rain.  Ocean-sourced moisture travels long distances on global winds, often through large-scale weather systems such as atmospheric ...

A faster problem-solving tool that guarantees feasibility

2025-11-03
Cambridge, MA – Managing a power grid is like trying to solve an enormous puzzle. Grid operators must ensure the proper amount of power is flowing to the right areas at the exact time when it is needed, and they must do this in a way that minimizes costs without overloading physical infrastructure. Even more, they must solve this complicated problem repeatedly, as rapidly as possible, to meet constantly changing demand. To help crack this consistent conundrum, MIT researchers developed a problem-solving tool that finds the optimal solution ...

Smartphones can monitor patients with neuromuscular diseases

2025-11-03
Because researchers have made such striking progress in developing drugs to treat neuromuscular diseases, Scott Delp, PhD, was surprised to learn that scientists conducting clinical trials were still relying on a decidedly low-tech tool to track whether those treatments were working: a stopwatch. In a study published in the New England Journal of Medicine, Delp, a professor of bioengineering, and his collaborators showed that a smartphone could do the job as well or better. With two smartphone cameras and a free app, they ...

Biomaterial vaccines to make implanted orthopedic devices safer

2025-11-03
By Benjamin Boettner (BOSTON) — Patients with implanted medical devices like orthopedic joint replacements, pacemakers, and artificial heart valves run a small but significant risk that these devices get infected with bacterial pathogens. This starts them on a burdensome path requiring “redo” (revision) surgeries, prolonged antibiotic treatments, or in severe cases amputation. If the infections spread in patients’ bodies, they can even become fatal. “In the U.S. alone, about ...

Semaglutide, tirzepatide, and dulaglutide have similar gastrointestinal safety profiles in clinical settings

2025-11-03
Embargoed for release until 5:00 p.m. ET on Monday 3 November 2025    Follow @Annalsofim on X, Facebook, Instagram, Bluesky, and Linkedin              Below please find summaries of new articles that will be published in the next issue of Annals of Internal Medicine. The summaries are not intended to substitute for the full articles as a source of information. This information is under strict embargo and by taking it into possession, media representatives are committing to the terms of the embargo not only on their own behalf, but also on behalf of the organization they represent.    ----------------------------     1. ...

Neural implant smaller than salt grain wirelessly tracks brain

2025-11-03
ITHACA, N.Y. – Cornell University researchers and collaborators have developed a neural implant so small that it can rest on a grain of salt, yet it can wirelessly transmit brain activity data in a living animal for more than a year. The breakthrough, detailed Nov. 3 in Nature Electronics, demonstrates that microelectronic systems can function at an unprecedentedly small scale, opening new possibilities for neural monitoring, bio-integrated sensing and other applications. Development of the device, called a microscale optoelectronic tetherless electrode, or MOTE, was co-led ...

LAST 30 PRESS RELEASES:

Transgender women do not have an increased risk of heart attack and stroke

Unexpectedly high concentrations of forever chemicals found in dead sea otters

Stress hormones silence key brain genes through chromatin-bound RNAs, study reveals

Groundbreaking review reveals how gut microbiota influences sleep disorders through the brain-gut axis

Breakthrough catalyst turns carbon dioxide into essential ingredient for clean fuels

New survey reveals men would rather sit in traffic than talk about prostate health

Casual teachers left behind: New study calls for better induction and support in schools

Adapting to change is the real key to unlocking GenAI’s potential, ECU research shows 

How algae help corals bounce back after bleaching 

Decoding sepsis: Unraveling key signaling pathways for targeted therapies

Lithium‑ion dynamic interface engineering of nano‑charged composite polymer electrolytes for solid‑state lithium‑metal batteries

Personalised care key to easing pain for people with Parkinson’s

UV light holds promise for energy-efficient desalination

Scientists discover new way to shape what a stem cell becomes

Global move towards plant-based diets could reshape farming jobs and reduce labor costs worldwide, Oxford study finds

New framework helps balance conservation and development in cold regions

Tiny iron minerals hold the key to breaking down plastic additives

New study reveals source of rain is major factor behind drought risks for farmers

A faster problem-solving tool that guarantees feasibility

Smartphones can monitor patients with neuromuscular diseases

Biomaterial vaccines to make implanted orthopedic devices safer

Semaglutide, tirzepatide, and dulaglutide have similar gastrointestinal safety profiles in clinical settings

Neural implant smaller than salt grain wirelessly tracks brain

Large brains require warm bodies and big offspring

Team’s biosensor technology may lead to breath test for lung cancer

Remote patient monitoring boosts primary care revenue and care capacity

Protein plays unexpected dual role in protecting brain from oxidative stress damage

Fermentation waste used to make natural fabric

When speaking out feels risky

Scientists recreate cosmic “fireballs” to probe mystery of missing gamma rays

[Press-News.org] UV light holds promise for energy-efficient desalination
UCR experiments offer pathway for solar solutions