(Press-News.org) Millions of tons of pesticides are used each year to protect crops, but traditional formulations release too quickly, degrade easily, and leach away, leading to low efficiency and environmental risks. Compared with the costly and time-consuming development of new pesticides, creating smart controlled-release formulations from existing ingredients is a simpler and more effective way to improve efficiency and reduce ecological harm.
A team led by Prof. WU Zhengyan and Prof. ZHANG Jia from the Hefei Institutes of Physical Science of the Chinese Academy of Sciences has developed a bioinspired prussian blue/PNIPAM nanohybrid (PAPP) with spatiotemporally decoupled release characteristics.
The results were published in Journal of Controlled Release.
Inspired by the dual-phase biocontrol strategy of parasitoid wasps, this system integrates alkaline-triggered burst release for coping with acute pest outbreaks and thermo/near-infrared (NIR)-responsive sustained release for long-term seasonal control. In this design, prussian blue nanoparticles serve as alkaline-degradable cores, while poly(N-isopropylacrylamide) hydrogel gates provide heat- and NIR-responsiveness. The dynamic nature of this architecture enables dual-phase pesticide management, combining rapid and sustained release modes.
The PAPP nanopesticides exhibited high drug-loading capacity, strong UV resistance, and improved foliar adhesion, ensuring long-lasting stability under field conditions. Both experimental results and simulations confirmed their strong insecticidal activity against Plutella xylostella, while reducing harm to crops and non-target organisms such as zebrafish and pollinators. Additionally, degradation of prussian blue releases Fe ions, which serve as beneficial micronutrients for plants, further enhancing ecological value.
This work presents a promising approach toward the development of efficient, environmentally friendly pesticide formulations, greatly contributing to the sustainable advancement of agriculture.
END
Bioinspired dual-phase nanopesticide enables smart controlled release
2025-11-05
ELSE PRESS RELEASES FROM THIS DATE:
Scientists reveal it is possible to beam up quantum signals
2025-11-05
Quantum satellites currently beam entangled particles of light from space down to different ground stations for ultra-secure communications. New research shows it is also possible to send these signals upward, from Earth to a satellite; something once thought unfeasible.
This breakthrough overcomes significant barriers to current quantum satellite communications. Ground station transmitters can access more power, are easier to maintain and could generate far stronger signals, enabling future quantum computer ...
Asymmetric stress engineering of dense dislocations in brittle superconductors for strong vortex pinning
2025-11-05
A collaborated research team led by Prof. MA Yanwei from the Institute of Electrical Engineering (IEE) of Chinese Academy of Sciences (CAS), has shattered records in the current-carrying performance of iron-based superconducting wires.
Their breakthrough, enabled by a novel strategy to engineer high-density flux pinning centers via an asymmetric stress field, is published in Advanced Materials.
The Steady High Magnetic Field Facility (CHMFL), the Hefei Institutes of Physical Science ...
Shared synaptic mechanism for Alzheimer's and Parkinson’s disease unlocks new treatment possibilities
2025-11-05
Parkinson’s and Alzheimer’s diseases are the two most common neurodegenerative disorders, affecting millions of people worldwide. Published in the Journal of Neuroscience, new research from the Okinawa Institute of Science and Technology (OIST) suggests a shared molecular cascade between the two diseases which causes synaptic dysfunctions, advancing our understanding of how their symptoms are produced.
The researchers investigated how brain cell communication across synapses is disrupted by disease-related protein buildup. They found a pathway that interferes with synaptic ...
Plasma strategy boosts antibacterial efficacy of silica-based materials
2025-11-05
Recently, Researcher NI Guohua and Associate Researcher SUN Hongmei from the Institute of Plasma Physics, together with Associate Professor WANG Dong from Anhui Medical University, developed a novel two-step plasma strategy to modify mesoporous silica-supported silver nanoparticles, enabling them to achieve strong antibacterial activity and accelerated wound healing.
Their findings were published in the Chemical Engineering Journal.
Mesoporous silica-supported silver nanoparticles (Ag/MSNs) show great potential for wound ...
High‑performance wide‑temperature zinc‑ion batteries with K+/C3N4 co‑intercalated ammonium vanadate cathodes
2025-11-05
As demand for safe and low-cost energy storage grows, aqueous zinc-ion batteries (AZIBs) have emerged as promising candidates. However, their practical application is hindered by cathode instability and poor low-temperature performance. Now, researchers from The Hong Kong Polytechnic University and Shenzhen University, led by Professor Zijian Li, have developed a novel K⁺ and C3N4 co-intercalated NH4V4O10 (KNVO-C3N4) cathode that delivers exceptional performance across a wide temperature range.
Why K⁺/C3N4 Co-Intercalation ...
Prioritized Na+ adsorption‑driven cationic electrostatic repulsion enables highly reversible zinc anodes at low temperatures
2025-11-05
As renewable energy storage demand grows, the limitations of aqueous zinc metal batteries (AZMBs) in subzero environments become more pronounced. Now, researchers from Harbin University of Science and Technology and Fudan University, led by Professor Xin Liu and Professor Dongliang Chao, have presented a breakthrough solution using trace Na2SO4 as an electrolyte additive. This work offers valuable insights into developing next-generation energy storage technologies that can overcome low-temperature challenges.
Why Na₂SO₄ Matters
Cost-Effective: Na2SO4 is an abundant, low-cost inorganic ...
Engineered membraneless organelles boost bioproduction in corynebacterium glutamicum
2025-11-05
A research team led by Professor WANG Peng from the Hefei Institutes of Physical Science of the Chinese Academy of Sciences, together with international researchers, has successfully engineered liquid-liquid phase separation (LLPS)-driven membraneless organelles (MLOs) within the food-grade industrial strain Corynebacterium glutamicum.
The related findings have been published in Synthetic and Systems Biotechnology.
LLPS-driven MLOs represent an emerging technology in cell structure engineering. By dynamically isolating enzymes and substrates, LLPS significantly improves metabolic efficiency and enhances the synthesis of target products.
In ...
Study finds moral costs in over-pricing for essentials
2025-11-05
When companies hike prices on essentials like food, medicine, or medical devices, the financial rewards may be immediate—but the reputational damage may linger and ultimately cost more in the long run.
That’s the finding of a study led by UC Riverside School of Business professor Margaret C. Campbell. Consumers, the research shows, judge prices for essential goods and services not just through the lens of supply and demand, but also through their sense of morality.
“If companies are perceived as taking advantage of vulnerable people—like the elderly or the uninsured—they may make ...
Australian scientists uncover secrets of yellow fever
2025-11-05
University of Queensland researchers have captured the first high-resolution images of the yellow fever virus (YFV), a potentially deadly viral disease transmitted by mosquitoes that affects the liver.
They’ve revealed structural differences between the vaccine strain (YFV-17D) and the virulent, disease-causing strains of the virus.
Dr Summa Bibby from UQ’s School of Chemistry and Molecular Bioscience said despite decades of research on yellow fever, this was the first time a complete 3D structure of a fully mature yellow fever virus particle had been recorded at near-atomic resolution.
“By utilising the well-established Binjari virus platform developed here at ...
Researchers develop high-performance biochar for efficient carbon dioxide capture
2025-11-05
A team of researchers has announced a breakthrough in carbon dioxide (CO2) capture technology, unveiling a novel biochar material synthesized from corn straw using a microwave-assisted, two-step chemical activation strategy. This innovative approach, published in Sustainable Carbon Materials, promises a low-cost, scalable solution for addressing global greenhouse gas emissions and advancing climate change mitigation efforts.
As atmospheric CO2 levels continue to rise, reaching 422.5 ppm globally in 2024, the urgent need for effective capture and sequestration technologies has become more ...