PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Alzheimer’s Disease can hijack communication between brain and fat tissue, potentially worsening cardiovascular and metabolic health

Houston Methodist research highlights potential link between neurodegeneration and cardiovascular and metabolic disorders

2025-11-05
(Press-News.org) A recent study from Houston Methodist sheds light on how Alzheimer’s disease may contribute to larger health issues by hijacking the body’s ability to regulate its metabolism. Researchers have discovered that along with the negative effects an Alzheimer’s diagnosis brings, the disease can also sabotage messages between nerves and blood vessels in fat tissue, which can worsen heart and metabolic conditions such as stroke, heart disease and diabetes.

The first-of-its-kind research, “Alzheimer’s disease disrupts intra-adipose neurovascular contact,” appears in the Journal of Lipid Research and highlights a previously underexplored aspect of Alzheimer’s: its potential to cause dysfunction of the autonomic (involuntary) nervous system extending beyond the brain. Led by Stephen Wong, Ph.D., the John S. Dunn Presidential Distinguished Chair in Biomedical Engineering, the study was conducted by his team at Houston Methodist, including key contributors Li Yang, Ph.D., a research associate, and Jianting Sheng, Ph.D., an assistant research professor of computational biology and mathematics in radiology.

Utilizing three-dimensional imaging and focusing on body fat in mouse models, the study’s high-resolution images provide a groundbreaking visual perspective revealing how the disease changes the structure of nerve and blood vessel bundles. These include the sympathetic nerves and blood vessels which play a critical role in regulating fat metabolism through hormonal and neural signaling.

“By disrupting the connection between the nervous system and fat tissue, the disease may impair the body’s ability to manage energy,” Li said.

This disturbance could help explain why individuals with Alzheimer’s often experience issues such as stroke, heart disease, diabetes, high blood pressure and other health troubles alongside cognitive decline.

“These insights open new avenues for research into how treating or preventing autonomic dysfunction might improve overall health outcomes for people with Alzheimer’s,” said Wong and Sheng.

For more information about Houston Methodist, visit our newsroom or our social media pages on X, Facebook, LinkedIn, Instagram and TikTok or our On Health and Leading Medicine blogs. 

END


ELSE PRESS RELEASES FROM THIS DATE:

New memristor wafer integration technology from DGIST paves the way for brain-like AI chips

2025-11-05
□ A research team led by Professor Sanghyeon Choi from the Department of Electrical Engineering and Computer Science at DGIST (President Kunwoo Lee) successfully developed the “memristor,” which is gaining recognition as a next-generation semiconductor device, through mass-integration at the wafer scale. This study proposes a new technological platform for implementing a highly integrated AI semiconductor replicating the human brain, overcoming the limitations of conventional semiconductors.   □ The human brain contains about 100 ...

Bioinspired dual-phase nanopesticide enables smart controlled release

2025-11-05
Millions of tons of pesticides are used each year to protect crops, but traditional formulations release too quickly, degrade easily, and leach away, leading to low efficiency and environmental risks. Compared with the costly and time-consuming development of new pesticides, creating smart controlled-release formulations from existing ingredients is a simpler and more effective way to improve efficiency and reduce ecological harm. A team led by Prof. WU Zhengyan and Prof. ZHANG Jia from the Hefei Institutes of Physical Science of the Chinese Academy of Sciences has developed a bioinspired prussian blue/PNIPAM nanohybrid ...

Scientists reveal it is possible to beam up quantum signals

2025-11-05
Quantum satellites currently beam entangled particles of light from space down to different ground stations for ultra-secure communications. New research shows it is also possible to send these signals upward, from Earth to a satellite; something once thought unfeasible. This breakthrough overcomes significant barriers to current quantum satellite communications. Ground station transmitters can access more power, are easier to maintain and could generate far stronger signals, enabling future quantum computer ...

Asymmetric stress engineering of dense dislocations in brittle superconductors for strong vortex pinning

2025-11-05
A collaborated research team led by Prof. MA Yanwei from the Institute of Electrical Engineering (IEE) of Chinese Academy of Sciences (CAS), has shattered records in the current-carrying performance of iron-based superconducting wires.  Their breakthrough, enabled by a novel strategy to engineer high-density flux pinning centers via an asymmetric stress field, is published in Advanced Materials.  The Steady High Magnetic Field Facility (CHMFL), the Hefei Institutes of Physical Science ...

Shared synaptic mechanism for Alzheimer's and Parkinson’s disease unlocks new treatment possibilities

2025-11-05
Parkinson’s and Alzheimer’s diseases are the two most common neurodegenerative disorders, affecting millions of people worldwide. Published in the Journal of Neuroscience, new research from the Okinawa Institute of Science and Technology (OIST) suggests a shared molecular cascade between the two diseases which causes synaptic dysfunctions, advancing our understanding of how their symptoms are produced.  The researchers investigated how brain cell communication across synapses is disrupted by disease-related protein buildup. They found a pathway that interferes with synaptic ...

Plasma strategy boosts antibacterial efficacy of silica-based materials

2025-11-05
Recently, Researcher NI Guohua and Associate Researcher SUN Hongmei from the Institute of Plasma Physics, together with Associate Professor WANG Dong from Anhui Medical University, developed a novel two-step plasma strategy to modify mesoporous silica-supported silver nanoparticles, enabling them to achieve strong antibacterial activity and accelerated wound healing. Their findings were published in the Chemical Engineering Journal. Mesoporous silica-supported silver nanoparticles (Ag/MSNs) show great potential for wound ...

High‑performance wide‑temperature zinc‑ion batteries with K+/C3N4 co‑intercalated ammonium vanadate cathodes

2025-11-05
As demand for safe and low-cost energy storage grows, aqueous zinc-ion batteries (AZIBs) have emerged as promising candidates. However, their practical application is hindered by cathode instability and poor low-temperature performance. Now, researchers from The Hong Kong Polytechnic University and Shenzhen University, led by Professor Zijian Li, have developed a novel K⁺ and C3N4 co-intercalated NH4V4O10 (KNVO-C3N4) cathode that delivers exceptional performance across a wide temperature range. Why K⁺/C3N4 Co-Intercalation ...

Prioritized Na+ adsorption‑driven cationic electrostatic repulsion enables highly reversible zinc anodes at low temperatures

2025-11-05
As renewable energy storage demand grows, the limitations of aqueous zinc metal batteries (AZMBs) in subzero environments become more pronounced. Now, researchers from Harbin University of Science and Technology and Fudan University, led by Professor Xin Liu and Professor Dongliang Chao, have presented a breakthrough solution using trace Na2SO4 as an electrolyte additive. This work offers valuable insights into developing next-generation energy storage technologies that can overcome low-temperature challenges. Why Na₂SO₄ Matters Cost-Effective: Na2SO4 is an abundant, low-cost inorganic ...

Engineered membraneless organelles boost bioproduction in corynebacterium glutamicum

2025-11-05
A research team led by Professor WANG Peng from the Hefei Institutes of Physical Science of the Chinese Academy of Sciences, together with international researchers, has successfully engineered liquid-liquid phase separation (LLPS)-driven membraneless organelles (MLOs) within the food-grade industrial strain Corynebacterium glutamicum.  The related findings have been published in Synthetic and Systems Biotechnology. LLPS-driven MLOs represent an emerging technology in cell structure engineering. By dynamically isolating enzymes and substrates, LLPS significantly improves metabolic efficiency and enhances the synthesis of target products.  In ...

Study finds moral costs in over-pricing for essentials

2025-11-05
When companies hike prices on essentials like food, medicine, or medical devices, the financial rewards may be immediate—but the reputational damage may linger and ultimately cost more in the long run. That’s the finding of a study led by UC Riverside School of Business professor Margaret C. Campbell. Consumers, the research shows, judge prices for essential goods and services not just through the lens of supply and demand, but also through their sense of morality. “If companies are perceived as taking advantage of vulnerable people—like the elderly or the uninsured—they may make ...

LAST 30 PRESS RELEASES:

ACP encourages all adults to receive the 2025-2026 influenza vaccine

Scientists document rise in temperature-related deaths in the US

A unified model of memory and perception: how Hebbian learning explains our recall of past events

Chemical evidence of ancient life detected in 3.3 billion-year-old rocks: Carnegie Science / PNAS

Medieval communities boosted biodiversity around Lake Constance

Groundbreaking research identifies lethal dose of plastics for seabirds, sea turtles and marine mammals: “It’s much smaller than you might think”

Lethal aggression, territory, and fitness in wild chimpanzees

The woman and the goose: a 12,000-year-old glimpse into prehistoric belief

Ancient chemical clues reveal Earth’s earliest life 3.3 billion years ago

From warriors to healers: a muscle stem cell signal redirects macrophages toward tadpole tail regeneration

How AI can rig polls

Investing in nurses reduces physician burnout, international study finds

Small changes in turnout could substantially alter election results in the future, study warns

Medicaid expansion increases access to HIV prevention medication for high-risk populations

Arkansas research awarded for determining cardinal temps for eight cover crops

Study reveals how the gut builds long-lasting immunity after viral infections

How people identify scents and perceive their pleasantness

Evidence builds for disrupted mitochondria as cause of Parkinson’s

SwRI turbocharges its hydrogen-fueled internal combustion engine

Parasitic ant tricks workers into killing their queen, then takes the throne

New study identifies part of brain animals use to make inferences

Reducing arsenic in drinking water cuts risk of death, even after years of chronic exposure

Lower arsenic in drinking water reduces death risk, even after years of chronic exposure

Lowering arsenic levels in groundwater decreases death rates from chronic disease

Arsenic exposure reduction and chronic disease mortality

Parasitic matricide, ants chemically compel host workers to kill their own queen

Clinical trials affected by research grant terminations at the National Institutes of Health

Racial and ethnic disparities in cesarean birth trends in the United States

Light-intensity-dependent transformation of mesoscopic molecular assemblies

Tirzepatide may only temporarily suppress brain activity involved in “food noise”

[Press-News.org] Alzheimer’s Disease can hijack communication between brain and fat tissue, potentially worsening cardiovascular and metabolic health
Houston Methodist research highlights potential link between neurodegeneration and cardiovascular and metabolic disorders