PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Measuring time at the quantum level

2026-02-06
(Press-News.org)

“The concept of time has troubled philosophers and physicists for thousands of years, and the advent of quantum mechanics has not simplified the problem,” says Professor Hugo Dil, a physicist at EPFL. “The central problem is the general role of time in quantum mechanics, and especially the timescale associated with a quantum transition.”

Quantum events, like tunnelling, or an electron changing its state by absorbing a photon, happen at mind‑bending speeds. Some take only a few tens of attoseconds (10-18 seconds), which is so short that light would not even cross the width of a small virus. 

But measuring time intervals this small is notoriously difficult, also because any external timing tool can distort the very thing we want to observe. “Although the 2023 Nobel prize in physics shows we can access such short times, the use of such an external time scale risks to induce artefacts,” says Dil. “This challenge can be resolved by using quantum interference methods, based on the link between accumulated phase and time.”

Dil has now led research that has developed a way to accurately measure time in quantum events. When electrons absorb a photon and leave a material, they carry information in the form of their spin, which changes depending on how the underlying quantum process unfolds. By reading these tiny changes, the researchers could infer how long the transition takes, without ever using an external clock.

As first author of the study Fei Guo says: “These experiments do not require an external reference, or clock, and yield the time scale required for the wavefunction of the electron to evolve from an initial to a final state at a higher energy upon photon absorption.”

The principle is this: When light excites an electron, it can follow several different quantum routes at once. These routes interfere with each other, and this interference shows up as a specific pattern in the emitted electron’s spin. By studying how that spin pattern changes with the electron’s energy, the team could calculate the duration of the transition.

For the study, the researchers used a technique called “spin- and angle-resolved photoemission spectroscopy” (SARPES). SARPES involves shining intense synchrotron light on a material, which pushes its electrons to a higher energy forcing them to exit the material's structure, and then measuring the energy, direction, and spin of the electrons that come out.

They tested materials with different “shapes” at the atomic level. Some are fully three‑dimensional, like ordinary copper. Others, like titanium diselenide (TiSe₂) and titanium ditelluride (TiTe₂), are built from weakly connected layers and behave more like flat sheets. Copper telluride (CuTe) has an even simpler, chain‑like structure. These differences make them ideal for testing how geometry affects timing.

The results showed a clear pattern: the simpler and more reduced the structure of the material, the longer the quantum transition lasted. In ordinary 3D copper, the transition was extremely fast, lasting about 26 attoseconds.

In the two layered materials, TiSe₂ and TiTe₂, the process slowed down noticeably to around 140–175 attoseconds. And in CuTe, which has a chain‑like structure, the transition stretched beyond 200 attoseconds. What this means is that the atomic‑scale “shape” of the material strongly influences how quickly the quantum event unfolds, with lower‑symmetry structures leading to longer transition times.

Dil explains: “Besides yielding fundamental information for understanding what determines the time delay in photoemission, our experimental results provide further insight into what factors influence time on the quantum level, to what extent quantum transitions can be considered instantaneous, and might pave the way to finally understand the role of time in quantum mechanics.”

The findings give physicists a new way to understand how time behaves in quantum processes. They also provide a tool for probing how electrons interact in complex materials. Knowing how long a quantum transition lasts can help scientists design materials with specific quantum features and improve future technologies that rely on precise control of quantum states.

Other contributors

Lausanne Centre for Ultrafast Science (LACUS) Paul Scherrer Institut CY Cergy Paris Université Université Paris-Saclay University of West Bohemia The University of Tokyo

Reference

Fei Guo, Dmitry Usanov, Eduardo B. Guedes, Mauro Fanciulli, Kaishu Kawaguchi, Ryo Mori, Takeshi Kondo, Arnaud Magrez, Michele Puppin, J. Hugo Dil. Dependency of quantum time scales on symmetry. Newton 06 February 2026.

END



ELSE PRESS RELEASES FROM THIS DATE:

Researchers find a way to 3D print one of industry’s hardest engineering materials

2026-02-06
Tungsten carbide–cobalt (WC–Co) is prized for its hardness, but that same property makes it unusually difficult to shape. The current process is wasteful and expensive for the yield produced, and an economically sensible method for creating these materials is long overdue. WC-Co cemented carbides are important in fields that require high wear resistance and hardness, such as cutting and construction tools. Currently, these carbides are made using powder metallurgy, utilizing high pressure and sintering machines to combine the WC and Co powders to yield a manufactured cemented carbide. Though this method does produce highly durable and hard final products, a lot of expensive ...

Coupling dynamic effect based on the molecular sieve regulation of Fe nanoparticles

2026-02-06
Iron-based molecular sieves show great promise for high-temperature NH3-SCR due to their intrinsic shape selectivity and thermal stability. However, excessive ammonia oxidation at high temperatures limits NOx conversion and long-term stability, and its kinetic transition remains poorly understood. A team led by Zhiqiang Sun, Hanzi Liu, and Xinlin Xie has developed a high-temperature Fe@ZSM-5 catalyst and established a coupled kinetic model to describe ammonia oxidation behavior at high temperatures. Their work is published in the journal Industrial Chemistry & Materials on December 2025. The authors synthesized HZSM-5 zeolites via ...

Engineering the “golden bridge”: Efficient tunnel junction design for next-generation all-perovskite tandem solar cells

2026-02-06
  WUHAN, CHINA — A research team from the Wuhan National Laboratory for Optoelectronics (WNLO) and the School of Optical and Electronic Information at Huazhong University of Science and Technology (HUST) has reported a new advancement in all-perovskite tandem solar cells. By utilizing quantitative Silvaco TCAD simulations, the team has elucidated the fundamental physics of the tunnel junction, providing a definitive design rule to overcome efficiency bottlenecks in all-perovskite tandem solar cells.   The Bottleneck: Unbalanced Charge Tunneling All-perovskite tandem solar cells are a high-potential technology ...

Understanding how cancer cells use water pressure to move through the body

2026-02-06
Fukuoka, Japan—Cancer is one of the leading causes of death worldwide, marked by the uncontrolled growth of abnormal cells. What makes it more dangerous is the ability of cancer cells to move quickly through the body, allowing them to invade surrounding tissues. While this behavior is well known, the mechanism behind this rapid spread remains unclear. Researchers from Kyushu University set out to fill this gap and unveiled a new physical process that helps cancer cells move rapidly throughout the body. This study was led by Professor Junichi Ikenouchi from Kyushu University’s Faculty of Medical Sciences, along with his colleagues at Kyushu University, in collaboration with ...

Killing cancer cells with RNA therapeutics

2026-02-06
COLUMBUS, Ohio – A new study in mice hints at the potential to use tiny particles made with RNA molecules to deliver chemotherapy drugs and other therapies directly to tumors, killing cancer cells without generating an immune response or toxicity-related side effects. Researchers constructed tiny molecular clusters called RNA micelles, loaded them with potent chemo drugs and an RNA molecule that blocks cancer survival, and placed a tumor targeting molecule on their outer wall that attaches to receptors on cancer cell surfaces to enhance delivery. Treatment with these RNA micelles almost ...

Mechanism-guided prediction of CMAS corrosion resistance and service life for high-entropy rare-earth disilicates

2026-02-06
Materials scientists have long sought to enhance the durability of thermal/environmental barrier coatings (T/EBCs) under extreme conditions, particularly against corrosion caused by calcium‑magnesium‑alumino‑silicate (CMAS) melts. Understanding the corrosion mechanisms and accurately predicting the long‑term service life of coating materials remain critical challenges for aerospace and energy applications.   Recently, a research team from Harbin Institute of Technology and Shanghai University achieved a significant breakthrough. They designed two novel high‑entropy rare‑earth disilicates—(Er1/4Y1/4Lu1/4Yb1/4)2Si2O7 and ...

Seeing the unseen: Scientists demonstrate dual-mode color generation from invisible light

2026-02-06
Invisible light beyond the range of human vision plays a vital role in communication technologies, medical diagnostics, and optical sensing. Ultraviolet and near-infrared wavelengths are routinely used in these fields, yet detecting them directly often requires complex instrumentation. Developing materials that can convert invisible light into visible signals could serve as essential components for measurement technologies and sensors, and play a major role in understanding the fundamental photophysical processes. However, developing those materials remains a key challenge in ...

Revealing deformation mechanisms of the mineral antigorite in subduction zones

2026-02-06
Earth’s surface is covered by more than a dozen tectonic plates, and in subduction zones around the world—including the Japanese Islands—plates converge and dense oceanic plates sink into the Earth’s interior. These regions, especially plate boundaries, are known for frequent seismic activity. In recent years, scientists have increasingly emphasized that water plays a crucial role in earthquake phenomena in subduction zones, and thus conducted active research to investigate the influence of water on various processes occurring within earthquake source regions. When water is supplied, peridotite—the primary constituent of ...

I’m walking here! A new model maps foot traffic in New York City

2026-02-06
Early in the 1969 film “Midnight Cowboy,” Dustin Hoffman, playing the character of Ratso Rizzo, crosses a Manhattan street and angrily bangs on the hood of an encroaching taxi. Hoffman’s line — “I’m walking here!” — has since been repeated by thousands of New Yorkers. Where cars and people mix, tensions rise.  And yet, governments and planners across the U.S. haven’t thoroughly tracked where it is that cars and people mix. Officials have long measured vehicle traffic closely while largely ignoring pedestrian traffic. Now, an MIT research group has assembled a routable dataset of sidewalks, ...

AI model can read and diagnose a brain MRI in seconds

2026-02-06
An AI-powered model developed at University of Michigan can read a brain MRI and diagnose a person in seconds, a study suggests. The model detected neurological conditions with up to 97.5% accuracy and predicted how urgently a patient required treatment. Researchers say the first-of-its-kind technology could transform neuroimaging at health systems across the United States. The results are published in Nature Biomedical Engineering. “As the global demand for MRI rises and places significant strain our physicians and health systems, our AI model has potential to reduce burden by improving diagnosis and treatment with fast, accurate ...

LAST 30 PRESS RELEASES:

Americans prefer to screen for cervical cancer in-clinic vs. at home

Rice lab to help develop bioprinted kidneys as part of ARPA-H PRINT program award

Researchers discover ABCA1 protein’s role in releasing molecular brakes on solid tumor immunotherapy

Scientists debunk claim that trees in the Dolomites anticipated a solar eclipse

Impact of the 2010 World Health Organization Code on global physician migration

Measuring time at the quantum level

Researchers find a way to 3D print one of industry’s hardest engineering materials

Coupling dynamic effect based on the molecular sieve regulation of Fe nanoparticles

Engineering the “golden bridge”: Efficient tunnel junction design for next-generation all-perovskite tandem solar cells

Understanding how cancer cells use water pressure to move through the body

Killing cancer cells with RNA therapeutics

Mechanism-guided prediction of CMAS corrosion resistance and service life for high-entropy rare-earth disilicates

Seeing the unseen: Scientists demonstrate dual-mode color generation from invisible light

Revealing deformation mechanisms of the mineral antigorite in subduction zones

I’m walking here! A new model maps foot traffic in New York City

AI model can read and diagnose a brain MRI in seconds

Researchers boost perovskite solar cell performance via interface engineering

‘Sticky coat’ boosts triple negative breast cancer’s ability to metastasize

James Webb Space Telescope reveals an exceptional richness of organic molecules in one of the most infrared luminous galaxies in the local Universe

The internet names a new deep-sea species, Senckenberg researchers select a scientific name from over 8,000 suggestions.

UT San Antonio-led research team discovers compound in 500-million-year-old fossils, shedding new light on Earth’s carbon cycle

Maternal perinatal depression may increase the risk of autistic-related traits in girls

Study: Blocking a key protein may create novel form of stress in cancer cells and re-sensitize chemo-resistant tumors

HRT via skin is best treatment for low bone density in women whose periods have stopped due to anorexia or exercise, says study

Insilico Medicine showcases at WHX 2026: Connecting the Middle East with global partners to accelerate translational research

From rice fields to fresh air: Transforming agricultural waste into a shield against indoor pollution

University of Houston study offers potential new targets to identify, remediate dyslexia

Scientists uncover hidden role of microalgae in spreading antibiotic resistance in waterways

Turning orange waste into powerful water-cleaning material

Papadelis to lead new pediatric brain research center

[Press-News.org] Measuring time at the quantum level