(Press-News.org) Boston, MA – Advances in DNA sequencing technology have revolutionized biomedical research and taken us another step forward in personalized medicine. Now, scientists led by Brigham and Women's Hospital (BWH), Harvard Medical School (HMS), the Broad Institute, the Wellcome Trust Sanger Institute (WTSI), the University of Washington, and the European Molecular Biology Laboratory, have developed a new framework for analyzing key genetic variations that previously were overlooked. The research will be published in the February 3 issue of the prestigious journal Nature.
Identifying genetic differences between individuals previously concentrated on single-nucleotide polymorphisms (SNPs), single letter differences in a person's DNA, which could be informative about a person's disease or even his/her predisposition to a disease. However, more recently, it has been appreciated that each person's genome also carries an enormous amount of structural variation- deletions, duplications, insertions, and inversions in the genetic sequence.
"There are many structural variants in everyone's genomes and they are increasingly being associated with various aspects of human health" said Charles Lee, PhD, a clinical cytogeneticist at BWH and associate professor at HMS, and co-chair of this project. "It is important to be able to identify and comprehensively characterize these genetic variants using state-of-the-art DNA sequencing technologies."
The genetic sequences of 185 individuals were generated by the 1000 Genomes Project and comprehensively analyzed for structural variants by 57 scientists from 26 institutions. Scientists quickly realized that conventional methods for detecting SNPs could not be applied to the identification of SVs and 19 new computer programs and strategies had to be developed and tested to more accurately identify SVs. "The study found that no one program could comprehensively identify SVs and that each program had advantages and disadvantages that in some cases complemented other analytical programs," said Matthew Hurles, DPhil, of the Wellcome Trust Sanger Institute and co-chair of the project.
The study found a total of 22,025 deletions and 6,000 other structural variants. "We have been given our first glimpses of the complete spectrum of human genetic variation – from 1 bp indels to larger copy number changes," said Evan Eichler, PhD, a Howard Hughes Investigator at the University of Washington and co-chair of the project.
The study also provided important insights into how SVs are formed in the genome, thus linking SVs to mutational processes acting in the germline. "We found 51 hotspots where SVs, such as large deletions, appear to occur particularly often," said Jan Korbel, PhD, a senior author of this study from the European Molecular Biology Laboratory in Heidelberg, Germany. "Six of those hotspots are in regions known to be related to genetic conditions, such as Miller-Dieker syndrome, a congenital brain disease that may lead to infant death."
Data from this project are being made publically available to the scientific community through the 1000 Genomes Project, which aims to sequence the genomes of 2500 people by December 2012. The resource will be the largest collection of whole-genome DNA sequences freely available to researchers. The data may be accessed from the 1000 Genomes Project Data Coordination Center, a collaboration between the NIH National Center for Biotechnology Information (NCBI) and the European Bioinformatics Institute (EBI), at www.1000Genomes.org.
"Identifying SVs from DNA sequencing datasets is very challenging and it is gratifying to see the incredible progress that the SV group has made over the past 2 years," said Richard Durbin, PhD, of the Wellcome Trust Sanger Institute and co-chair of the 1000 Genomes Project. David Altshuler, MD, PhD, of the Broad Institute, also a co-chair of the 1000 Genomes Project, added, "I am confident that this map will serve as an important resource for future sequencing-based disease association studies."
INFORMATION:
Organizations that have committed major support for the project include Illumina; Life Technologies; the Wellcome Trust Sanger Institute; and the NHGRI, which supports the work being done at Baylor College of Medicine, Brigham and Women's Hospital; Boston College; Broad Institute; Cold Spring Harbor Laboratory; Washington University of St. Louis; University of California San Diego; University of Washington; and Yale University. Other institutions involved in this research include BGI-Shenzhen; Howard Hughes Medical Institute; Leiden University Medical Center; Louisiana State University; Max Planck Institute for Molecular Genetics; Mount Sinai School of Medicine; Roche; Simon Fraser University; Stanford University; University of Oxford; and University of Copenhagen.
Brigham and Women's Hospital (BWH) is a 793-bed nonprofit teaching affiliate of Harvard Medical School and a founding member of Partners HealthCare, an integrated health care delivery network. BWH is the home of the Carl J. and Ruth Shapiro Cardiovascular Center, the most advanced center of its kind. BWH is committed to excellence in patient care with expertise in virtually every specialty of medicine and surgery. The BWH medical preeminence dates back to 1832, and today that rich history in clinical care is coupled with its national leadership in quality improvement and patient safety initiatives and its dedication to educating and training the next generation of health care professionals. Through investigation and discovery conducted at its Biomedical Research Institute (BRI), BWH is an international leader in basic, clinical and translational research on human diseases, involving more than 900 physician-investigators and renowned biomedical scientists and faculty supported by more than $ 537 M in funding. BWH is also home to major landmark epidemiologic population studies, including the Nurses' and Physicians' Health Studies and the Women's Health Initiative. For more information about BWH, please visit www.brighamandwomens.org
The Eli and Edythe L. Broad Institute of MIT and Harvard was founded in 2003 to empower this generation of creative scientists to transform medicine with new genome-based knowledge. The Broad Institute seeks to describe all the molecular components of life and their connections; discover the molecular basis of major human diseases; develop effective new approaches to diagnostics and therapeutics; and disseminate discoveries, tools, methods and data openly to the entire scientific community. Founded by MIT, Harvard and its affiliated hospitals, and the visionary Los Angeles philanthropists Eli and Edythe L. Broad, the Broad Institute includes faculty, professional staff and students from throughout the MIT and Harvard biomedical research communities and beyond, with collaborations spanning over a hundred private and public institutions in more than 40 countries worldwide. For further information about the Broad Institute, go to www.broadinstitute.org.
The Wellcome Trust Sanger Institute, which receives the majority of its funding from the Wellcome Trust, was founded in 1992 as the focus for UK sequencing efforts. The Institute is responsible for the completion of the sequence of approximately one-third of the human genome as well as genomes of model organisms such as mouse and zebrafish, and more than 90 pathogen genomes. In October 2005, new funding was awarded by the Wellcome Trust to enable the Institute to build on its world-class scientific achievements and exploit the wealth of genome data now available to answer important questions about health and disease. These programmes are built around a Faculty of more than 30 senior researchers. The Wellcome Trust Sanger Institute is based in Hinxton, Cambridge, UK. http://www.sanger.ac.uk/
The European Bioinformatics Institute (EBI) is part of the European Molecular Biology Laboratory (EMBL) and is located on the Wellcome Trust Genome Campus in Hinxton near Cambridge (UK). For more information, go to www.ebi.ac.uk.
The European Molecular Biology Laboratory is a basic research institute funded by public research monies from 20 member states (Austria, Belgium, Croatia, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Israel, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and the United Kingdom) and associate member state Australia. Research at EMBL is conducted by approximately 85 independent groups covering the spectrum of molecular biology. The Laboratory has five units: the main Laboratory in Heidelberg, and Outstations in Hinxton (the European Bioinformatics Institute), Grenoble, Hamburg, and Monterotondo near Rome. The cornerstones of EMBL's mission are: to perform basic research in molecular biology; to train scientists, students and visitors at all levels; to offer vital services to scientists in the member states; to develop new instruments and methods in the life sciences and to actively engage in technology transfer activities. Around 190 students are enrolled in EMBL's International PhD programme. Additionally, the Laboratory offers a platform for dialogue with the general public through various science communication activities such as lecture series, visitor programmes and the dissemination of scientific achievements.
NHGRI is one of 27 institutes and centers at the NIH, an agency of the Department of Health and Human Services. The NHGRI Division of Extramural Research supports grants for research and for training and career development t sites nationwide. Additional information about NHGRI can be found at its Web site, www.genome.gov. The National Institutes of Health – "The Nation's Medical Research Agency" – includes 27 institutes and centers, and is a component of the U.S. Department of Health and Human Services. It is the primary U.S. federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments and cures for both common and rare diseases. For more, visit www.nih.gov.
The National Center for Biotechnology Information (NCBI) creates public databases in molecular biology, conducts research in computational biology, develops software tools for analyzing molecular and genomic data, and disseminates biomedical information, all for the better understanding of processes affecting human health and disease. NCBI (www.ncbi.nlm.nih.gov) is a division of the National Library of Medicine (www.nlm.nih.gov), the world's largest library of the health sciences.
Researchers develop new framework for analyzing genetic variants
A study from the 1000 Genomes Project yields data for analyzing structural variants in DNA
2011-02-03
ELSE PRESS RELEASES FROM THIS DATE:
The human genome's breaking points
2011-02-03
A detailed analysis of data from 185 human genomes sequenced in the course of the 1000 Genomes Project, by scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, in collaboration with researchers at the Wellcome Trust Sanger Institute in Cambridge, UK, as well as the University of Washington and Harvard Medical School, both in the USA, has identified the genetic sequence of an unprecedented 28 000 structural variants (SVs) – large portions of the human genome which differ from one person to another. The work, published today in Nature, could ...
A picture-perfect pure-disc galaxy
2011-02-03
NGC 3621 is a spiral galaxy about 22 million light-years away in the constellation of Hydra (The Sea Snake). It is comparatively bright and can be seen well in moderate-sized telescopes. This picture was taken using the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile. The data were selected from the ESO archive by Joe DePasquale as part of the Hidden Treasures competition [1]. Joe's picture of NGC 3621 was ranked fourth in the competition.
This galaxy has a flat pancake shape, indicating that it hasn't yet come face to face ...
Mayo researchers pinpoint how 1 cancer gene functions
2011-02-03
ROCHESTER, Minn. -- For several decades, researchers have been linking genetic mutations to diseases ranging from cancer to developmental abnormalities. What hasn't been clear, however, is how the body's genome sustains such destructive glitches in the first place. Now a team of Mayo Clinic scientists and collaborators provide an unprecedented glimpse of a little-understood gene, called MMSET, revealing how it enables disease-causing mutations to occur. The findings appear in the current issue of Nature.
"MMSET had been known for many years, and had been shown to be mutated ...
Flash of fresh insight by electrical brain stimulation
2011-02-03
Are we on the verge of being able to stimulate the brain to see the world anew - an electric thinking cap? Research by Richard Chi and Allan Snyder from the Centre for the Mind at the University of Sydney suggests that this could be the case.
They found that participants who received electrical stimulation of the anterior temporal lobes were three times as likely to reach the fresh insight necessary to solve a difficult, unfamiliar problem than those in the control group. The study published on February 2 in the open-access journal PLoS ONE.
According to the authors, ...
Children's genes influence how well they take advantage of education
2011-02-03
New research from the Twins Early Development Study at King's College London Institute of Psychiatry (IoP), published in PLoS ONE on February 2nd, shows that measures used to judge the effectiveness of schools are partly influenced by genetic factors in students.
The study, funded by the Medical Research Council (MRC), was conducted by scientists in the UK at the MRC Social, Genetic and Developmental Psychiatry Centre, King's IoP, and in the US at the University of New Mexico.
The assumption behind measures of school effectiveness is that changes in student performance ...
Multiple genome sequencing yields detailed map of structural variants behind our genetic differences
2011-02-03
Chestnut Hill, Mass. (2/3/2011) – Analyzing billions of pieces of genetic data collected from people around the world, Boston College biologist Gabor Marth and his research team are playing an integral role in the global effort to sequence 1000 genomes and move closer to understanding in fine detail how genetics influence human health and development.
The most comprehensive map to date of genomic structural variants – the layer of our DNA that begins to distinguish us from one another – has been assembled by analyzing 185 human genomes, Marth and co-authors from the 1000 ...
Researchers identify molecular predictor of metastatic prostate cancer
2011-02-03
BOSTON—Prostate tumors that carry a "signature" of four molecular markers have the potential to become dangerously metastatic if not treated aggressively, researchers at Dana-Farber Cancer Institute report in a study published online today by the journal Nature. The discovery lays the groundwork for the first gene-based test for determining whether a man's prostate cancer is likely to remain dormant within the prostate gland, or spread lethally to other parts of the body.
By analyzing prostate cancer tissue from hundreds of men participating in a national health study, ...
Schizophrenia gene mutation found; target for new drugs
2011-02-03
In a major advance for schizophrenia research, an international team of scientists, led by Jonathan Sebat, PhD, assistant professor of psychiatry and cellular and molecular medicine at the University of California, San Diego School of Medicine, has identified a gene mutation strongly linked to the brain disorder – and a signaling pathway that may be treatable with existing compounds.
The work poses significant and immediate implications for neurobiology and the treatment of schizophrenia because the gene identified by the researchers is an especially attractive target ...
Cell reprogramming leaves a 'footprint' behind
2011-02-03
LA JOLLA, CA—Reprogramming adult cells to recapture their youthful "can-do-it-all" attitude appears to leave an indelible mark, found researchers at the Salk Institute for Biological Studies. When the team, led by Joseph Ecker, PhD., a professor in the Genomic Analysis Laboratory, scoured the epigenomes of so-called induced pluripotent stem cells base by base, they found a consistent pattern of reprogramming errors.
What's more, these incompletely or inadequately reprogrammed hotspots are maintained when iPS cells are differentiated into a more specialized cell type, ...
Why folic acid may prevent a first heart attack, but not a second
2011-02-03
A perplexing medical paradox now has an explanation according to research undertaken at Barts and The London School of Medicine and Dentistry and published in the current issue of the Public Library of Science. The paradox is that taking folic acid, a B vitamin, lowers homocysteine in the blood which, epidemiological evidence indicates, should lower the risk of heart attack, but clinical trials of folic acid have not shown the expected benefit.
The explanation is surprisingly simple; lowering homocysteine prevents platelets sticking, which stops blood clots…something ...
LAST 30 PRESS RELEASES:
Label distribution similarity-based noise correction for crowdsourcing
The Lancet: Without immediate action nearly 260 million people in the USA predicted to have overweight or obesity by 2050
Diabetes medication may be effective in helping people drink less alcohol
US over 40s could live extra 5 years if they were all as active as top 25% of population
Limit hospital emissions by using short AI prompts - study
UT Health San Antonio ranks at the top 5% globally among universities for clinical medicine research
Fayetteville police positive about partnership with social workers
Optical biosensor rapidly detects monkeypox virus
New drug targets for Alzheimer’s identified from cerebrospinal fluid
Neuro-oncology experts reveal how to use AI to improve brain cancer diagnosis, monitoring, treatment
Argonne to explore novel ways to fight cancer and transform vaccine discovery with over $21 million from ARPA-H
Firefighters exposed to chemicals linked with breast cancer
Addressing the rural mental health crisis via telehealth
Standardized autism screening during pediatric well visits identified more, younger children with high likelihood for autism diagnosis
Researchers shed light on skin tone bias in breast cancer imaging
Study finds humidity diminishes daytime cooling gains in urban green spaces
Tennessee RiverLine secures $500,000 Appalachian Regional Commission Grant for river experience planning and design standards
AI tool ‘sees’ cancer gene signatures in biopsy images
Answer ALS releases world's largest ALS patient-based iPSC and bio data repository
2024 Joseph A. Johnson Award Goes to Johns Hopkins University Assistant Professor Danielle Speller
Slow editing of protein blueprints leads to cell death
Industrial air pollution triggers ice formation in clouds, reducing cloud cover and boosting snowfall
Emerging alternatives to reduce animal testing show promise
Presenting Evo – a model for decoding and designing genetic sequences
Global plastic waste set to double by 2050, but new study offers blueprint for significant reductions
Industrial snow: Factories trigger local snowfall by freezing clouds
Backyard birds learn from their new neighbors when moving house
New study in Science finds that just four global policies could eliminate more than 90% of plastic waste and 30% of linked carbon emissions by 2050
Breakthrough in capturing 'hot' CO2 from industrial exhaust
New discovery enables gene therapy for muscular dystrophies, other disorders
[Press-News.org] Researchers develop new framework for analyzing genetic variantsA study from the 1000 Genomes Project yields data for analyzing structural variants in DNA