(Press-News.org) DURHAM, N.C. – Timing is everything in the long-standing arms race between the flowering plant Arabidopsis and Hyaloperonospora, a downy mildew pathogen.
Duke University researchers have found that the little mustard plant cranks up its immune system in the morning to prepare for the greatest onslaught of infectious spores released by the mildew.
It isn't news that plants know what time of day it is and change their activities accordingly, but this is the first time that a plant's defensive systems have been shown to cycle on a daily basis – even when pathogens aren't present. Their work appears in the Feb. 3 edition of Nature.
The powerful chemical compounds Arabidopsis uses to fight mildew infection are expensive to make and also potentially harmful to the plant itself over the long-term, so a daily, or circadian, cycle of production is safer and more efficient than simply having the chemicals on hand all the time, said Duke biology professor Xinnian Dong.
Morning, just as the dew dries, is the right time to have defenses at the ready.
When the mildew has been able to successfully set up housekeeping within Arabidopsis, it produces a flowering body that grows upward from the leaf surface. Bearing its spores for the next generation, it looks very much like a tree covered with apples. As the morning dew dries from the leaf, the mildew's flowering body twists violently, flinging the tiny spores in all directions to be carried on air currents until they settle on a potential new host.
Other researchers who have collected the spores had noted that the morning was the most productive time to catch them, but Arabidopsis apparently already knew that.
Dong and her graduate students Wei Wang and Jinyoung Barnaby discovered this surprising circadian clock connection during a more general search of Arabidopsis immune system genes. They found 22 candidate genes that were a part of the immune response to downy mildew and many of them showed rhythmic expression patterns.
Wang also watched expression patterns of these defense genes in the absence of any pathogens and found them cycling daily. "It suggests that the plants are programmed to anticipate infection according to a circadian schedule," Dong said.
To test this hypothesis, Wang exposed plants to the mildew spores at "dawn" or "dusk" in a greenhouse with artificial 12-hour days. He found infection rates were much higher at dusk when spores were not expected in nature.
To identify the clock components that control this immune defense, Wang began a series of experiments on so-called "clock mutants," which are Arabidopsis plants that lack portions of the circadian time-keeping system. He found that the mutant missing the central clock component CCA1 suffered much higher infection rates than normal plants. Conversely, a plant line expressing CCA1 all the time had heightened resistance.
Over the last decade, plant researchers have identified several systems that work on a circadian clock, including starch metabolism, photosynthesis and frost-resistance, said Robert McClung, a Dartmouth University biologist who was not involved in this research, but is writing an accompanying commentary on the paper for Nature. "This sort of completes the suite of environmental insults that the clock manages," he said.
Although this finding is specific so far to Arabadopsis and its exclusive pathogen Hyaloperonospora, it's likely to be a system that will be found in other plants and pathogens, McClung said.
While it makes logical sense that clock mechanisms would be involved with the plant's immune system, this is still "a remarkable discovery," said Philip Benfey, the Paul Kramer professor of biology at Duke. "This required an experimental tour de force combined with inspired insight to make the connection between gene expression patterns and preparation for pathogen attack."
"It was a huge amount of work, even though the conclusion is quite simple," Dong said.
###
The research was supported by grants from the National Science Foundation.
CITATION: "Timing of Plant Immune Responses by a Central Circadian Regulator," Wei Wang, et al. Nature, 3 February, 2011. DOI 10.1038/nature09766.
END
BLOOMINGTON, Ind. -- Complexity ever in the eye of its beholders, the animal with the most genes -- about 31,000 -- is the near-microscopic freshwater crustacean Daphnia pulex, or water flea. By comparison, humans have about 23,000 genes. Daphnia is the first crustacean to have its genome sequenced.
The findings are part of a comprehensive report in this week's Science by members of the Daphnia Genomics Consortium, an international network of scientists led by the Center for Genomics and Bioinformatics (CGB) at Indiana University Bloomington and the U.S. Department of ...
BOULDER, Colo.—In a paradox typical of the quantum world, JILA scientists have eliminated collisions between atoms in an atomic clock by packing the atoms closer together. The surprising discovery, described in the Feb. 3 issue of Science Express,* can
boost the performance of experimental atomic clocks made of thousands or tens of thousands of neutral atoms trapped by intersecting laser beams.
JILA is jointly operated by the National Institute of Standards and Technology (NIST) and the University of Colorado Boulder.
JILA scientists demonstrated the new approach using ...
The potentially deadly bacterium Salmonella possesses a molecular machine that marshals the proteins it needs to hijack cellular mechanisms and infect millions worldwide.
In a paper published Feb. 3 online in Science Express, Yale University researchers describe in detail how Salmonella, a major cause of food poisoning and typhoid fever, is able to make these proteins line in up in just the right sequence to invade host cells.
"These mechanisms present us with novel targets that might form the basis for the development of an entirely new class of anti-microbials," ...
The study shows that in 2008, more than one in ten of the world's adult population was obese, with women more likely to be obese than men. An estimated 205 million men and 297 million adult women were obese - a total of more than half a billion adults worldwide.
The proportion of the world's population with high blood pressure, or uncontrolled hypertension, fell modestly between 1980 and 2008. However, because of population growth and ageing, the number of people with uncontrolled hypertension rose from 600 million in 1980 to nearly 1 billion in 2008. High-income countries ...
SAN ANTONIO, Texas, U.S.A. (Feb. 4, 2011) — Like two unruly boys who need to be split up in class, a pair of protein molecules work together to speed up the toxic events of Alzheimer's disease. Researchers at the UT Health Science Center San Antonio today announced the discovery of the second molecule and said its identification could lead to drugs that disrupt the interaction, and thereby block or slow Alzheimer's onset or progression.
Alzheimer's disease is an irreversible, progressive brain disease marked by deterioration of nerve cells and eventual complete loss of ...
A new way of splitting layered materials to give atom thin "nanosheets" has been discovered. This has led to a range of novel two-dimensional nanomaterials with chemical and electronic properties that have the potential to enable new electronic and energy storage technologies. The collaborative* international research led by the Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Ireland, and the University of Oxford has been published in this week's Science.
The scientists have invented a versatile method for creating these ...
The human body has a remarkable ability to heal itself. Due to the presence of dedicated stem cells, many organs can undergo continuous renewal. When an organ becomes damaged, stem cells in the organ are typically activated, producing new cells to regenerate the tissue. This activity of stem cells, however, has to be carefully controlled, as too much stem cell activity can cause diseases like cancer. Current research in stem cell biology is starting to unravel the control mechanisms that maintain a balance between efficient regeneration and proper control of stem cell function. ...
Cold Spring Harbor, N.Y. – A constellation of different stem cell populations within our skin help it to cope with normal wear and tear. By constantly proliferating, the stem cells allow skin to replenish itself, allowing each cell to be replaced by a new one about once a month. But the normal cycle of division and death within one or more of these stem cell types can sometimes be derailed by genetic mishaps. Such events are believed to spawn carcinomas and other deadly skin cancers, which are the mostly frequently diagnosed cancers in the United States.
Researchers ...
Surprising new evidence which overturns current theories of how humans colonised the Pacific has been discovered by scientists at the University of Leeds, UK.
The islands of Polynesia were first inhabited around 3,000 years ago, but where these people came from has long been a hot topic of debate amongst scientists. The most commonly accepted view, based on archaeological and linguistic evidence as well as genetic studies, is that Pacific islanders were the latter part of a migration south and eastwards from Taiwan which began around 4,000 years ago.
But the Leeds research ...
New research shows that the 2010 Amazon drought may have been even more devastating to the region's rainforests than the unusual 2005 drought, which was previously billed as a one-in-100 year event.
Analyses of rainfall across 5.3 million square kilometres of Amazonia during the 2010 dry season, published tomorrow in Science, shows that the drought was more widespread and severe than in 2005. The UK-Brazilian team also calculate that the carbon impact of the 2010 drought may eventually exceed the 5 billion tonnes of CO2 released following the 2005 event, as severe droughts ...