PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Probing atomic chicken wire

A team led by University of Arizona physicists has demonstrated that mounting graphene on boron nitride instead of silicon oxide dramatically improves its electronic properties

Probing atomic chicken wire
2011-03-05
(Press-News.org) Graphene – a sheet of carbon atoms linked in a hexagonal, chicken wire structure – holds great promise for microelectronics. Only one atom thick and highly conductive, graphene may one day replace conventional silicon microchips, making devices smaller, faster and more energy-efficient.

In addition to potential applications in integrated circuits, solar cells, miniaturized bio devices and gas molecule sensors, the material has attracted the attention of physicists for its unique properties in conducting electricity on an atomic level.

Otherwise known as pencil "lead," graphene has very little resistance and allows electrons to behave as massless particles like photons, or light particles, while traveling through the hexagonal grid at very high speeds.

The study of the physical properties and potential applications of graphene, however, has suffered from a lack of suitable carrier materials that can support a flat graphene layer while not interfering with its electrical properties.

Researchers in the University of Arizona's physics department along with collaborators from the Massachusetts Institute of Technology and the National Materials Science Institute in Japan have now taken an important step forward toward overcoming those obstacles.

They found that by placing the graphene layer on a material almost identical in structure, instead of the commonly used silicon oxide found in microchips, they could significantly improve its electronic properties.

Substituting silicon wafers with boron nitride, a graphene-like structure consisting of boron and nitrogen atoms in place of the carbon atoms, the group was the first to measure the topography and electrical properties of the resulting smooth graphene layer with atomic resolution.

The results are published in the advance online publication of Nature Materials.

"Structurally, boron nitride is basically the same as graphene, but electronically, it's completely different," said Brian LeRoy, an assistant professor of physics and senior author of the study. "Graphene is a conductor, boron nitride is an insulator."

"We want our graphene to sit on something insulating, because we are interested in studying the properties of the graphene alone. For example, if you want to measure its resistance, and you put it on metal, you're just going to measure the resistance of the metal because it's going to conduct better than the graphene."

Unlike silicon, which is traditionally used in electronics applications, graphene is a single sheet of atoms, making it a promising candidate in the quest for ever smaller electronic devices. Think going from a paperback to a credit card.

"It's as small as you can shrink it down," LeRoy said. "It's a single layer, you'll never get half a layer or something like that. You could say graphene is the ultimate in making it small, yet it 's still a good conductor."

Stacked upon each other, 3 million sheets of graphene would amount to only 1 millimeter. The thinnest material on Earth, graphene brought the 2010 Nobel Prize to Andre Geim and Konstantin Novoselov, who were able to demonstrate its exceptional properties with relation to quantum physics.

"Using a scanning tunneling microscope, we can look at atoms and study them," he added. "When we put graphene on silicon oxide and look at the atoms, we see bumps that are about a nanometer in height."

While a nanometer – a billionth of a meter – may not sound like much, to an electron whizzing along in a grid of atoms, it's quite a bump in the road.

"It's basically like a piece of paper that has little crinkles in it," LeRoy explains. "But if you put the paper, in this case the graphene, on boron nitride, it's much flatter. It smooths out the bumps by an order of magnitude."

LeRoy admits the second effect achieved by his research team is a bit harder to explain.

"When you have graphene sitting on silicon oxide, there are trapped electric charges inside the silicon oxide in some places, and these induce some charge in the overlying graphene. You get quite a bit of variation in the density of electrons. If graphene sits on boron nitride, the variation is two orders of magnitude less."

In his lab, LeRoy demonstrates the first – and surprisingly low-tech – step in characterizing the graphene samples: He places a tiny flake of graphite – the stuff that makes up pencil "lead" – on sticky tape, folds it back on itself and peels it apart again, in a process reminiscent of a Rorschach Test.

"You fold this in half," he explained, "and again, and again, until it gets thin. Graphene wants to peel off into these layers, because the bonds between the atoms in the horizontal layer are strong, but weak between atoms belonging to different layers. When you put this under an optical microscope, there will be regions with one, two, three, four or more layers. Then you just search for single-layer ones using the microscope."

"It's hard to find the sample because it's very, very small," said Jiamin Xue, a doctoral student in LeRoy's lab and the paper's leading author. "Once we find it, we put it between two gold electrodes so we can measure the conductance."

To measure the topography of the graphene surface, the team uses a scanning tunneling microscope, which has an ultrafine tip that can be moved around.

"We move the tip very close to the graphene, until electrons start tunneling to it," Xue explained. "That's how we can see the surface. If there is a bump, the tip moves up a bit."

For the spectroscopic measurement, Xue holds the tip at a fixed distance above the sample. He then changes the voltage and measures how much current flows as a function of that voltage and any given point across the sample. This allows him to map out different energy levels across the sample.

"You want as thin an insulator as possible," LeRoy added. "The initial idea was to pick something flat but insulating. Because boron nitride essentially has the same structure as graphene, you can peel it into layers in the same way. Therefore, we use a metal as a base, put a thin layer of boron nitride on it and then graphene on top."



INFORMATION:

The UA portion of this research was funded by the U.S. Army Research Office and the National Science Foundation.


[Attachments] See images for this press release:
Probing atomic chicken wire

ELSE PRESS RELEASES FROM THIS DATE:

University of Nevada, Reno, teams with IMMY to make new life-saving blood test

University of Nevada, Reno, teams with IMMY to make new life-saving blood test
2011-03-05
RENO, Nev. – A new, rapid blood test that could lead to early diagnosis and potentially save the lives of hundreds of thousands of people stricken with fungal meningitis, a leading cause of AIDS-related deaths in developing countries, is getting closer to market with a recent collaboration between the University of Nevada, Reno and Immuno-Mycologics (IMMY) in Oklahoma. "The ability to quickly identify yeast infection in patients is expected to help in significantly reducing cryptococcal meningitis deaths in resource-limited countries such as those in sub-Saharan Africa," ...

New microscope produces dazzling 3-D movies of live cells

2011-03-05
A new microscope invented by scientists at Howard Hughes Medical Institute's Janelia Farm Research Campus will let researchers use an exquisitely thin sheet of light -- similar to that used in supermarket bar-code scanners -- to peer inside single living cells, revealing the three-dimensional shapes of cellular landmarks in unprecedented detail. The microscopy technique images at high speed, so researchers can create dazzling movies that make biological processes, such as cell division, come alive. The technique, called Bessel beam plane illumination microscopy, is described ...

Boosting protein garbage disposal in brain cells protects mice from Alzheimer's disease

2011-03-05
Washington, D.C. – Gene therapy that boosts the ability of brain cells to gobble up toxic proteins prevents development of Alzheimer's disease in mice that are predestined to develop it, report researchers at Georgetown University Medical Center. They say the treatment – which is given just once - could potentially do the same in people at the beginning stages of the disease. The study, published online in Human Molecular Genetics, demonstrates that giving brain cells extra parkin genes promotes efficient and effective removal of amyloid particles believed to be destroying ...

Supercritical carbon dioxide Brayton Cycle turbines promise giant leap

2011-03-05
ALBUQUERQUE, N.M. — Sandia National Laboratories researchers are moving into the demonstration phase of a novel gas turbine system for power generation, with the promise that thermal-to-electric conversion efficiency will be increased to as much as 50 percent — an improvement of 50 percent for nuclear power stations equipped with steam turbines, or a 40 percent improvement for simple gas turbines. The system is also very compact, meaning that capital costs would be relatively low. Research focuses on supercritical carbon dioxide (S-CO2) Brayton-cycle turbines, which typically ...

Sink or source? A new model to measure organic carbon in surface waters

2011-03-05
A new carbon model allows scientists to estimate sources and losses of organic carbon in surface waters in the United States. Study results indicate that streams act as both sources and sinks for organic carbon. "Model estimates help managers and researchers track carbon transport in streams, which is information that is ultimately needed to improve our understanding of the fate of rising carbon dioxide levels in the atmosphere," said Dr. Richard Smith, a USGS hydrologist and coauthor of the study. "The study contributes new information on the role of rivers as sources ...

Vaccinated children not at higher risk of infections or allergic diseases

2011-03-05
May vaccinations put too much strain on or weaken children's immune systems and are therefore harmful? Roma Schmitz and her colleagues from the Robert Koch Institute investigate exactly this research question in the current issue of Deutsches Ärzteblatt International (Dtsch Arztebl Int 2011; 108(7): 105-11). Their data are based on the results of the German Health Interview and Examination Survey for Children and Adolescents (KiGGS). In their study, the authors compare the occurrence of infections and allergies in vaccinated and unvaccinated children and adolescents. These ...

The better off sleep better

2011-03-05
Analysis of the early data from Understanding Society based on 14,000 UK households found that overall the best sleep was reported by people with higher levels of education and by married people. The type of work a person does also impacts on sleep, with those in routine occupations reporting worse sleep than those in professional occupations. Professor Sara Arber at the University of Surrey who analysed the findings said: "Given the links between sleep, social and economic circumstances and poor health found in this and other surveys, health promotion campaigns should ...

The scars of impacts on Mars

The scars of impacts on Mars
2011-03-05
ESA's Mars Express has returned new images of an elongated impact crater in the southern hemisphere of Mars. Located just south of the Huygens basin, it could have been carved out by a train of projectiles striking the planet at a shallow angle. The large Huygens basin (not visible in the main image but seen in the wider contextual image) is about 450 km in diameter and lies in the heavily cratered southern highlands. In this area there are many impact scars but none perhaps are more intriguing than the 'elongated craters'. One of these craters is seen in this new image, ...

Zooming in on the weapons of Salmonella

2011-03-05
Some of the most dreaded diseases in the world such as plague, typhoid and cholera are caused by bacteria that have one thing in common: they possess an infection apparatus which is a nearly unbeatable weapon. When attacking a cell of the body, they develop numerous hollow-needle-shaped structures that project from the bacterial surface. Through these needles, the bacteria inject signal substances into the host cells, which re-program the latter and thereby overcome their defense. From this time on it's easy game for the pathogens; they can invade the cells unimpeded and ...

BNCT, a new-generation radiation treatment, is effective in advanced head and neck cancer

2011-03-05
Biologically targeted BNCT treatment is based on producing radiation inside a tumour using boron-10 and thermal neutrons. Boron-10 is introduced into cancer cells with the help of a special carrier substance (phenylalanine), after which the tumour is irradiated with lowenergy neutrons. The latter react with the boron to generate high-LET radiation, which may destroy the cancer cells. One to two BNCT treatment sessions may be sufficient to destroy a tumour, while keeping the impact of radiation on surrounding healthy tissue to a minimum. A research reactor is currently ...

LAST 30 PRESS RELEASES:

Duke-NUS scientists develop novel plug-and-play test to evaluate T cell immunotherapy effectiveness

Compound metalens achieves distortion-free imaging with wide field of view

Age on the molecular level: showing changes through proteins

Label distribution similarity-based noise correction for crowdsourcing

The Lancet: Without immediate action nearly 260 million people in the USA predicted to have overweight or obesity by 2050

Diabetes medication may be effective in helping people drink less alcohol

US over 40s could live extra 5 years if they were all as active as top 25% of population

Limit hospital emissions by using short AI prompts - study

UT Health San Antonio ranks at the top 5% globally among universities for clinical medicine research

Fayetteville police positive about partnership with social workers

Optical biosensor rapidly detects monkeypox virus

New drug targets for Alzheimer’s identified from cerebrospinal fluid

Neuro-oncology experts reveal how to use AI to improve brain cancer diagnosis, monitoring, treatment

Argonne to explore novel ways to fight cancer and transform vaccine discovery with over $21 million from ARPA-H

Firefighters exposed to chemicals linked with breast cancer

Addressing the rural mental health crisis via telehealth

Standardized autism screening during pediatric well visits identified more, younger children with high likelihood for autism diagnosis

Researchers shed light on skin tone bias in breast cancer imaging

Study finds humidity diminishes daytime cooling gains in urban green spaces

Tennessee RiverLine secures $500,000 Appalachian Regional Commission Grant for river experience planning and design standards

AI tool ‘sees’ cancer gene signatures in biopsy images

Answer ALS releases world's largest ALS patient-based iPSC and bio data repository

2024 Joseph A. Johnson Award Goes to Johns Hopkins University Assistant Professor Danielle Speller

Slow editing of protein blueprints leads to cell death

Industrial air pollution triggers ice formation in clouds, reducing cloud cover and boosting snowfall

Emerging alternatives to reduce animal testing show promise

Presenting Evo – a model for decoding and designing genetic sequences

Global plastic waste set to double by 2050, but new study offers blueprint for significant reductions

Industrial snow: Factories trigger local snowfall by freezing clouds

Backyard birds learn from their new neighbors when moving house

[Press-News.org] Probing atomic chicken wire
A team led by University of Arizona physicists has demonstrated that mounting graphene on boron nitride instead of silicon oxide dramatically improves its electronic properties