(Press-News.org) WEST LAFAYETTE, Ind. - A Purdue University-led sequencing of the Selaginella moellendorffii (spikemoss) genome - the first for a non-seed vascular plant - is expected to give scientists a better understanding of how plants of all kinds evolved over the past 500 million years and could open new doors for the identification of new pharmaceuticals.
Jody Banks, a professor of botany and plant pathology, led a team of about 100 scientists from 11 countries to sequence the genome of Selaginella, a lycophyte. Lycophytes, which are the oldest living vascular plants, shed spores to reproduce and have a single vascular vein through their leaves, as opposed to more complex vascular plants.
"There are only three families and about 1,000 species of lycophytes remaining. Selaginella has been on Earth about 200 million years," said Banks, whose findings were published Thursday (May 5) in the journal Science. "This plant is a survivor. It has a really long history and it hasn't really changed much over time. When you burn coal, you're burning the Carboniferous relatives of these plants."
Banks said the Selaginella genome, with about 22,300 genes, is relatively small. Scientists also discovered that Selaginella is the only known plant not to have experienced a polyploidy event, in which it creates one or more extra sets of chromosomes.
Selaginella also is missing genes known in other plants to control flowering, phase changes from juvenile plants to adults and other functions.
"It does these in a totally unknown way," Banks said.
Banks said Selaginella's genome would help scientists understand how its genes give the plant some of its unique characteristics. The genome also will help them understand how Selaginella and other plants are evolutionarily connected.
In comparing this genome sequence with others, researchers were able to identify genes that are present only in vascular plants and genes present only in flowering plants. These genes likely played important roles in the early evolution of vascular and flowering plants, respectively. Many of these genes have unknown functions, but it is likely that those genes that are present only in flowering plants may function in the development of fruits and seeds, which are important to agriculture.
"For many plant genes, we have no idea what their function is," Banks said. "Knowing this gives us ideas. It's an important piece of the puzzle in understanding how plants evolved."
Banks also noted that Selaginella and Arabidopsis thaliana, a plant widely used in research, use significantly different genes to control creation of secondary metabolites, molecules that are responsible for creating scents, seed dispersal functions, defense and other tasks. Those secondary metabolites also are used to create pharmaceuticals.
"These metabolic genes evolved independently in Selaginella and flowering plants, so the metabolites they make are likely to be very different," Banks said. "This means Selaginella could be a huge resource for new pharmaceuticals."
Banks said the genome sequence would now be mined for more information as scientists learn more about plant evolution and applications for Selaginella's genes.
INFORMATION:
The National Science Foundation, the National Institutes of Health and several international organizations funded the research. The Joint Genome Institute of the U.S. Department of Energy sequenced the genome.
Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu
Source: Jody Banks, 765-494-5895, banksj@purdue.edu
PHOTO CAPTION:
Jody Banks led the effort to sequence the genome of Selaginella, seen through a shade screen that allows it to be grown in greenhouses here. Selaginella is the first plant of its kind, a lycophyte, to have its genome sequenced. (Purdue Agricultural Communication photo/Tom Campbell)
A publication-quality photo is available at http://www.purdue.edu/uns/images/2011/banks-selaginella.jpg
Abstract on the research in this release is available at: http://www.purdue.edu/newsroom/research/2011/110505BanksSelaginella.html
Selaginella genome adds piece to plant evolutionary puzzle
2011-05-08
ELSE PRESS RELEASES FROM THIS DATE:
Wistar researchers: Direct proof of how T cells stay in 'standby' mode
2011-05-08
For much of the time our T cells—the white blood cells that act as the police of the immune system—are in what immunologists call a "quiescent state," a sort of standby mode. For years, scientists have wondered if quiescence occurred by default or whether T cells need to work at remaining silent. Now, researchers at The Wistar Institute provide the first direct proof that a protein, called Foxp1, actively maintains this state of quiescence in T cells until the cells are called upon by other parts of the immune system.
Their findings, which appear online through Nature ...
It takes a community of soil microbes to protect plants from disease
2011-05-08
Those vegetables you had for dinner may have once been protected by an immune system akin to the one that helps you fight disease. Scientists from the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and the Netherland's Wageningen University found that plants rely on a complex community of soil microbes to defend themselves against pathogens, much the way mammals harbor a raft of microbes to avoid infections.
The scientists deciphered, for the first time, the group of microbes that enables a patch of soil to suppress a plant-killing pathogen. ...
Antibodies help protect monkeys from HIV-like virus, NIH scientists show
2011-05-08
WHAT:
Using a monkey model of AIDS, scientists have identified a vaccine-generated immune-system response that correlates with protection against infection by the monkey version of HIV, called simian immunodeficiency virus (SIV). The researchers found that neutralizing antibodies generated by immunization were associated with protection against SIV infection. This finding marks an important step toward understanding how an effective HIV vaccine could work, according to scientists who led the study at the National Institute of Allergy and Infectious Diseases (NIAID), part ...
Anatomy of an outbreak
2011-05-08
GALVESTON, Texas — What causes a virus to suddenly begin infecting large numbers of people?
Scientists have long known that the process they call "viral emergence" involves a wide variety of factors. Some are changes in the environment, either generated by natural causes or human activity. Others are internal, arising from accidental changes — mutations —in the virus' genetic code.
Studying such mutations in different strains of the chikungunya virus has helped University of Texas Medical Branch researchers solve one of the most puzzling mysteries of chikungunya's ...
Forecast calls for nanoflowers to help return eyesight
2011-05-08
EUGENE, Ore. -- University of Oregon researcher Richard Taylor is on a quest to grow flowers that will help people who've lost their sight, such as those suffering from macular degeneration, to see again.
These flowers are not roses, tulips or columbines. They will be nanoflowers seeded from nano-sized particles of metals that grow, or self assemble, in a natural process -- diffusion limited aggregation. They will be fractals that mimic and communicate efficiently with neurons.
Fractals are "a trademark building block of nature," Taylor says. Fractals are objects with ...
DNA from common stomach bacteria minimizes effects of colitis, U-M study says
2011-05-08
ANN ARBOR, Mich. — DNA from Helicobacter pylori, a common stomach bacteria, minimizes the effects of colitis in mice, according to a new study by University of Michigan Medical School scientists.
The study published in Gut this month was performed by a team of investigators assembled by senior author John Y. Kao, M.D. of the University of Michigan's Division of Gastroenterology and assistant professor in U-M's Department of Internal Medicine. The findings indicate that DNA from H. pylori significantly ameliorates the severity of colitis, say lead authors Jay Luther, M.D. ...
When self-esteem is threatened, people pay with credit cards
2011-05-08
Los Angeles, CA - People shop for high status items when they're feeling low, and they're more likely to make those expensive purchases on credit, according to a study in the current Social Psychological and Personality Science (published by SAGE).
When a person's ego is threatened—by doing poorly on a task, by being told they're not as good as they hoped—people sometimes repair their self-worth by purchasing luxury goods. Because actually parting with cash can be psychologically painful, researchers Niro Sivanathan of the London Business School and Nathan Pettit of Cornell ...
No smoking policies may present challenges to treatment centers
2011-05-08
COLUMBUS, Ohio – When a new tobacco-free policy was instituted at an Ohio women's substance abuse treatment center, both smokers and non-smokers were more likely to leave treatment early in the first few months after the policy change, a new study found.
The results don't mean treatment centers shouldn't try smoking bans, according to the researchers, but they do highlight the challenges involved with implementing a new policy that goes against years of conventional thinking.
Researchers found that the number of patients who completed a program at the women's treatment ...
Study probes sources of Mississippi River phosphorus
2011-05-08
MADISON, WI MAY 5, 2011 – In their eagerness to cut nitrogen and phosphorus pollution in the Mississippi River and Gulf of Mexico, people have often sought simple explanations for the problem: too many large animal operations, for instance, or farmers who apply too much fertilizer, which then flows into waterways.
But according to new modeling research that examined phosphorus loading from all 1768 counties in the Mississippi River Basin (MRB), the true causes aren't nearly so straightforward. Livestock manure is widespread in many MRB counties, for example, but it shows ...
UT Southwestern research reveals how cancer-driving enzyme works
2011-05-08
DALLAS – May 6, 2011 – Cancer researchers at UT Southwestern Medical Center are helping unlock the cellular-level function of the telomerase enzyme, which is linked to the disease's growth.
Their latest findings, published today in Molecular Cell, demonstrate that telomerase repairs chromosomes in one of two ways – depending on whether a cell is dividing normally or if the cell is under stress from enzyme inhibition – and could lead to new or improved cancer-fighting therapies that promote inhibition of this enzyme.
"It's a significant advance in our understanding of ...