PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

'Orca ears' inspire Stanford researchers to develop ultrasensitive undersea microphone

2011-06-24
(Press-News.org) For most people, listening to the ocean means contemplating the soothing sound of waves breaking gently on a sandy beach.

But for researchers studying everything from whale migration to fisheries populations, and from underwater mapping to guiding robots trying to repair leaking undersea oil wells, listening to the ocean from the other side – underwater – can reveal volumes of valuable data.

Stanford researchers have developed a highly sensitive underwater microphone that can capture the whole range of ocean sounds, from the equivalent of a soft whisper in a library to an explosion of a ton of TNT just 60 feet away – a range of approximately 160 decibels – and do so accurately at any depth, no matter how crushing the pressure. It also can hear sound frequencies across a span of 17 octaves, spanning pitches far higher than the whine of a mosquito and far lower than a rumbling foghorn.

Existing underwater microphones – called hydrophones – have much more limited ranges of sensitivity and do not perform well at depth, where the ambient pressure can be extremely large, making it difficult to detect faint sounds.

Sonar – using sound to locate and map – is critical to underwater communication and exploration, because radio signals can travel only a centimeter or two before they dissipate in seawater and light can't penetrate the depths below about 100 meters.

In approaching the challenge of designing the new hydrophone, the researchers first examined some existing listening devices that work well underwater – the ears of marine mammals, particularly orcas.

"Orcas had millions of years to optimize their sonar and it shows," said Onur Kilic, a postdoctoral researcher in electrical engineering. "They can sense sounds over a tremendous range of frequencies and that was what we wanted to do."

Kilic is the lead author of a paper about the research published in the Journal of the Acoustic Society of America earlier this year.

What orcas, humans and other creatures perceive as sound consists of small fluctuations in pressure. When someone beats a drum, it is the flexing of the membrane on the drum, first deflecting then rebounding, which causes the sound waves that we can hear. A microphone detects those sounds by means of a membrane or diaphragm inside it that vibrates in response to the pressure waves of sound that reach it.

Air pressure on the surface of the Earth is fairly constant, so in designing a microphone for use on land, engineers don't have to worry about large variations in air pressure.

But in the ocean, for every 10 meters you descend below the surface, the water pressure around you increases by the equivalent of 1 atmosphere – the air pressure we feel at the surface.

The deepest point on the planet, the Challenger Deep in the Mariana Trench in the South Pacific, lies approximately 11,000 meters (almost 7 miles) below sea level. At that depth, the pressure is approximately 1,100 times the air pressure at Earth's surface.

"The only way to make a sensor that can detect very small fluctuations in pressure against such immense range in background pressure is to fill the sensor with water," Kilic said.

Letting water flow into the microphone keeps the water pressure on each side of the membrane equal, no matter how deep.

Kilic and his colleagues fabricated a silicon chip with a thin membrane about 500 nanometers thick – about 25 times thinner than common plastic wrap – and drilled a grid of tiny nano-holes in it, to allow water to pass in and out.

But unlike air, water is virtually incompressible, so having water on each side of the diaphragm damped the amount that the diaphragm could move in response to any given sound waves that struck it.

"The kind of displacements you get of the diaphragm for the quietest sounds in the ocean is on the order of a hundred-thousandth of a nanometer," Kilic said. "That is ten thousand times smaller than the diameter of an atom."

One of the best ways to detect and accurately measure movements that small is by using lasers and mirrors, creating a sort of tiny light show inside the microphone.

Kilic ran a fiberoptic cable into the water-filled microphone, with the end of the cable positioned near the inside surface of the diaphragm. He then shot light from a laser out the end of the cable onto the diaphragm.

Normally a diaphragm so thin would be transparent, allowing the laser's light to escape. But the researchers knew that if the diameters of the holes that allowed water to pass through the diaphragm were close to the wavelength of the light from the laser, the holes would interfere with light trying to pass through the membrane. Instead of letting it pass, the holes would reflect the light back toward the tip of the fiber optic cable, effectively turning the diaphragm into a mirror even as it still allowed water to pass.

"It is counterintuitive, because we don't see this happen at our scale," Kilic said. "But at very small scales, with the right size holes drilled through the membrane, it works."

When the diaphragm is deformed ever so slightly by a sound wave, the intensity of the light reflected back into the cable is altered, which is measured with an optical detector.

Now the scientists had a hydrophone that would function at any depth and could detect and measure sound with extreme accuracy. But to be able to capture the full range of volumes they were after – a spread of 160 decibels – one diaphragm wasn't enough. So they used three.

By giving each one a different diameter, they were able to "tune" each diaphragm to maximize its sensitivity to a different part of the range of volumes they wanted to detect. One was tuned to measure quiet sounds on the library-whisper end of the spectrum, one was attuned more to the loud, TNT explosion end of the range, and the third was tuned to the mid-range volumes.

The diaphragms are so tiny – the largest is three-tenths of a millimeter in diameter – Kilic could fit all three into a space far smaller than the wavelengths of the sound they sought to detect. That was critical, because it allowed the diaphragms to effectively function as one.

"Since they all measure the exact same signal – just with different degrees of responsiveness – they work like a single sensor," Kilic said.

"It is a very high dynamic range microphone, able to sense everything from the weakest sounds to those 100 million times stronger."

All three diaphragms – along with a separate fiber optic cable for each, plus another used for calibration – fit easily into the housing of the microphone, which is barely larger than a pea.

But the little pea-sized microphone could have a big impact on a wide range of research, from standard applications such as surveying the ocean floor to more exotic endeavors in particle physics that use acoustic detectors to monitor ultra-high-energy neutrinos – almost weightless particles emitted by the sun – plunging into the ocean.

INFORMATION:

Michel Digonnet, research professor of applied physics; Gordon Kino, professor emeritus of electrical engineering; and Olav Solgaard, associate professor of electrical engineering, are coauthors of the paper.

The research was funded by Litton Systems Inc., a wholly owned subsidiary of Northrop-Grumman Corp.

END



ELSE PRESS RELEASES FROM THIS DATE:

Researchers discover migration patterns of marine predators

2011-06-24
Ian Jonsen, a research associate and adjunct professor in the Department of Biology at Dalhousie University and co-lead investigator of the Future of Marine Animal Populations Project (FMAP), has teamed up with Barbara Block at Stanford University and several other American researchers to conclude a two year study entitled, "Tracking apex marine predator movements in a dynamic ocean" published in the science journal Nature released June 22. The study summarized the results from a ten year tagging program called the Tagging of Pacific Predators (TOPP). The TOPP program ...

BUSM study identifies new potential approaches to treat myelofibrosis

2011-06-24
(Boston) – A new study conducted by a team of researchers at Boston University School of Medicine (BUSM) sheds light on a possible new approach to treat the bone marrow disease known as myelofibrosis by inhibiting an enzyme that connects extracellular fibers. The study, published online in the Journal of Biological Chemistry, was conducted under the direction of Katya Ravid, PhD, professor of medicine and biochemistry and director of the Evans Center for Interdisciplinary Biomedical Research at BUSM. Myelofibroisis, which currently affects between 16,000 and 18,500 Americans, ...

Model helps pinpoint cyanobacterial genes that capture the sun's energy

Model helps pinpoint cyanobacterial genes that capture the suns energy
2011-06-24
RICHLAND, Wash. – A new computer model of blue-green algae can predict which of the organism's genes are central to capturing energy from sunlight and other critical processes. Described in a paper published in the journal Molecular BioSystems, the model could advance efforts to produce biofuel and other energy sources from blue-green algae, known as cyanobacteria. Researchers from the Department of Energy's Pacific Northwest National Laboratory, Washington University in St. Louis and Purdue University developed the model, which was made for the single-celled marine ...

A Brooklyn Purveyor Cellification.com of Unlocked Cell Phones is Celebrating the Arrival of Summer with the Latest Releases; Cellification.com is Offering Price Breaks of Ten Percent or More

2011-06-24
A Brooklyn purveyor of unlocked cell phones is celebrating the arrival of summer with the latest releases from Nokia, Samsung, HTC, and more. In the spirit of Spring Break, Cellification.com is offering price breaks of ten percent or more on select phones and models on a first-come/first-served basis for a limited time only. The sale is also being held to honor the upcoming one-year anniversary of an FCC ruling that finds unlocked cell phones to be entirely legal. It was only last year that the FCC released their revised rules governing a number of intellectual property ...

Contaminated cocaine triggers decaying, dying skin

2011-06-24
If the obvious reasons for avoiding recreational drug use aren't off-putting enough, physicians have yet another detrimental consequence to add to the list – crusty, purplish areas of dead skin that are extremely painful and can open the door to nasty infections. The condition is called purpura. Typical causes include a range of rare disorders, but it is also associated with the use of cocaine. Not just any cocaine, though: Physicians, researchers and health officials believe cocaine contaminated with a de-worming drug commonly used by veterinarians is the culprit. ...

Compound may provide drug therapy approach for Huntington's disease

2011-06-24
DALLAS – June 23, 2011 – UT Southwestern Medical Center researchers have identified compounds that appear to inhibit a signaling pathway in Huntington's disease, a finding that may eventually lead to a potential drug therapy to help slow the progression of degenerative nerve disorders. "Our studies have uncovered a new therapeutic target for Huntington's disease treatment and possibly for other neurodegenerative diseases," said Dr. Ilya Bezprozvanny, professor of physiology and senior author of the study, published in today's issue of Chemistry and Biology. "In addition, ...

Young Author Writes Book to Help Peers Succeed in Grade School!

Young Author Writes Book to Help Peers Succeed in Grade School!
2011-06-24
Children love to succeed and do well in school. Watch a child being praised, and you will see his or her face light up with pride. Have you noticed when children do good and receive positive feedback, they want to continue to do good? Unfortunately the opposite is true as well. If young children are not consistently reminded of their manners, they often tend to get in trouble, which can lead to feelings of embarrassment and sadness. In a recent survey, more than 70 percent of U.S. adults said they thought people are ruder now than they were 20 years ago. Guaranteed Success ...

NASA satellite gets 2 tropical cyclones in 1 shot

NASA satellite gets 2 tropical cyclones in 1 shot
2011-06-24
The Northwestern Pacific Ocean is active with two tropical cyclones today, Tropical Storm Meari near the Philippines, and Tropical Depression Haima moving over China and now toward Vietnam. NASA's Aqua satellite passed over the region on June 22 and captured an infrared image of both storms in one image. One of the instruments onboard NASA's Aqua satellite is the Atmospheric Infrared Sounder (AIRS). AIRS captures cloud top temperatures in tropical cyclones to determine the strength of convection and thunderstorms. The strongest thunderstorms have cloud tops with icy cold ...

Solar wind samples give insight into birth of solar system

2011-06-24
LOS ALAMOS, New Mexico, June 23, 2011—Two papers in this week's issue of Science report the first oxygen and nitrogen isotopic measurements of the Sun, demonstrating that they are verydifferent from the same elements on Earth. These results were the top two priorities of NASA's Genesis mission, which was the first spacecraft to return from beyond the Moon, crashing in the Utah desert in 2004 after its parachute failed to deploy during re-entry. Most of the Genesis payload consisted of fragile solar-wind collectors, which had been exposed to the solar particles over a ...

New insights into origin of deadly cancer

2011-06-24
Boston, MA—Researchers have discovered a new mechanism for the origin of Barrett's esophagus, an intestine-like growth in the esophagus that is triggered by chronic acid reflux and often progresses to esophageal cancer. Studying mice, the researchers found that Barrett's esophagus arises not from mutant cells in the esophagus but rather a small group of previously overlooked cells present in all adults that can rapidly expand to cancer precursors when the normal esophagus is damaged by acid. This research will be published online in the June 24th issue of Cell. Decades ...

LAST 30 PRESS RELEASES:

Schlechter named Cancer Moonshot Scholar

Two-way water transfers can ensure reliability, save money for urban and agricultural users during drought in Western U.S., new study shows

New issue of advances in dental research explores the role of women in dental, clinical, and translational research

Team unlocks new insights on pulsar signals

Great apes visually track subject-object relationships like humans do

Recovery of testing for heart disease risk factors post-COVID remains patchy

Final data and undiscovered images from NASA’s NEOWISE

Nucleoporin93: A silent protector in vascular health

Can we avert the looming food crisis of climate change?

Alcohol use and antiobesity medication treatment

Study reveals cause of common cancer immunotherapy side effect

New era in amphibian biology

Harbor service, VAST Data provide boost for NCSA systems

New prognostic model enhances survival prediction in liver failure

China focuses on improving air quality via the coordinated control of fine particles and ozone

Machine learning reveals behaviors linked with early Alzheimer’s, points to new treatments

Novel gene therapy trial for sickle cell disease launches

Engineering hypoallergenic cats

Microwave-induced pyrolysis: A promising solution for recycling electric cables

Cooling with light: Exploring optical cooling in semiconductor quantum dots

Breakthrough in clean energy: Scientists pioneer novel heat-to-electricity conversion

Study finds opposing effects of short-term and continuous noise on western bluebird parental care

Quantifying disease impact and overcoming practical treatment barriers for primary progressive aphasia

Sports betting and financial market data show how people misinterpret new information in predictable ways

Long COVID brain fog linked to lung function

Concussions slow brain activity of high school football players

Study details how cancer cells fend off starvation and death from chemotherapy

Transformation of UN SDGs only way forward for sustainable development 

New study reveals genetic drivers of early onset type 2 diabetes in South Asians 

Delay and pay: Tipping point costs quadruple after waiting

[Press-News.org] 'Orca ears' inspire Stanford researchers to develop ultrasensitive undersea microphone