(Press-News.org) National Institutes of Health-funded researchers have identified two proteins that may be the key components of the long-sought after mechanotransduction channel in the inner ear—the place where the mechanical stimulation of sound waves is transformed into electrical signals that the brain recognizes as sound. The findings are published in the Nov. 21 online issue of The Journal of Clinical Investigation.
The study used mice in which two genes, TMC1 and TMC2, have been deleted. The researchers revealed a specific functional deficit in the mechanotransduction channels of the mice's stereocilia (bristly projections that perch atop the sensory cells of the inner ear, called hair cells), while the rest of the hair cell's structure and function was normal.
These genes and the proteins they regulate are the strongest candidates yet in a decades-long search for the transduction channel that is at the center of the inner ear's ability to receive sound and transfer it to the brain. Andrew J. Griffith, M.D., Ph.D., chief of the molecular biology and genetics section and the otolaryngology branch at the National Institute on Deafness and Other Communication Disorders (NIDCD) at NIH, and Jeffrey R. Holt, Ph.D., an associate professor in the department of otolaryngology at Harvard Medical School's Children's Hospital in Boston, co-led the team that published the findings.
"For many years, the NIDCD has funded research using genetic approaches to discover and analyze genes underlying hereditary deafness," said James F. Battey, Jr., M.D., Ph.D., director of the NIDCD. "We believed these studies would also help us identify genes and proteins that are critical for normal hearing. Now our efforts appear to be paying off, in this discovery of integral components in the mechanotransduction complex."
Like other sensory cells, the hair cell's transduction channel is presumed to be an ion channel—a tiny opening or pore in the cell that lets electrically charged molecules (ions) pass in and out—and which acts as a molecular mechanism for turning sound vibrations into electrical signals in the cochlea, the snail-shaped organ of the inner ear. Mechanotransduction in sensory hair cells also underlies the sense of balance in the vestibular organs of the inner ear. Researchers have theorized that the channel must be located in the tips of hair cell stereocilia, which are linked by a system of horizontal filaments (called tip links) that connect the shorter stereocilia to their taller neighbors so that the whole bundle moves as one unit when it is stimulated by sound or head movements.
Drs. Griffith and Holt and their team focused on TMC1, a gene named for its trans-membrane-channel-like amino acid sequence. Dr. Griffith and another team of NIDCD-funded collaborators had previously discovered TMC1 as a gene in which mutations cause hereditary deafness in humans and mice. Multiple regions of the protein that TMC1 encodes looked as though they would be able to span the plasma membrane (the outer membrane of a cell that controls cellular traffic) and act as a receptor or a channel. The researchers also zeroed in on TMC2, a gene that has a structure much like TMC1's and has similar membrane-spanning domains in its code.
The scientists genetically engineered mice with knocked-out versions of the two genes and then bred the mice so that some had no functional copies of TMC1 or TMC2, and some had one gene knocked out but the other present. This was to help the scientists identify redundancy in gene function, a consequence of families of genes that can fill in for each other when one of them is deleted or mutated.
The team observed that TMC2 knockout mice had normal hearing and no balance issues (balance issues would indicate problems with the hair cells in the vestibular system), but that mice with no functional copies of TMC1 or TMC2 had the classic behaviors of dizzy mice – head bobbing, neck arching, unstable gait, and circling movements – and they were deaf. The TMC1 knockout mice were also deaf, but they had no balance issues. Looking at tissue slices of the mouse inner ears over time from birth, the researchers could see the expression of TMC1 and TMC2 in hair cells in the vestibular organs and the cochlea from birth. But a week later, TMC2 appeared to be turned off in the cochlea while it continued to be expressed in the vestibular organs. Since only TMC1 continues to be expressed in the mature cochlear hair cell, the researchers propose that TMC1 is essential for hearing, but TMC2 is not. However, in the vestibular system, TMC2 expression can substitute for TMC1 to maintain vestibular function.
To further home in on the properties of TMC1, the scientists measured the electrical activity in hair cells from the double mutant mice. Mice that had no functional TMC1 or TMC2 had no mechanotransduction currents in their cells. All other ion channels in the double mutant mice appeared to be functioning normally. The TMC1 deficit appeared to be specific to mechanotransduction -- not just a symptom of a problem that affects the whole cell.
Under a scanning electron microscope, the structure of the bundles of double mutant hair cells looked completely normal, which ruled out structural anomalies that could be interrupting transduction. Other tests probed for the presence of mechanotransduction channels by using a fluorescent dye and gentamicin (a drug that causes hearing loss by damaging hair cells), both of which are known to be freely taken up into stereocilia. The double mutant mice did not take up either substance, while the normal mice did.
Another novel technique, adapted in labs at NIDCD for studying inner ear hair cells, used a gene gun to fire fluorescent tagged TMC1 and TMC2 genes at normal tissue to see where the genes expressed their proteins. The proteins clustered at the tips of the stereocilia, where one would expect to see them if they played a prominent role in mechanotransduction.
To further support their findings, the researchers found that by using a gene therapy technique that adds the proteins back into the cell, they could restore transduction to vestibular and cochlear hair cells of the mice missing TMC1 and TMC2. This suggests that it might be possible to reverse genetic deficits at the cellular level.
"What we see in the hair cells of these double mutant knockout mice," says Dr. Griffith, "is a unique combination of properties that one would expect to see in a hair cell that has a defective transduction channel or some defect in getting that channel to where it needs to be and functioning."
To discover exactly how the channel machinery operates, the team will continue to explore how TMC1 and TMC2 interact with each other as well as how they interact with other proteins at the stereocilia tip that are essential to transduction. These include the tip link cadherins and protocadherins, which were also identified and characterized in NIDCD-funded laboratories. If these genes encode the transduction channel, they will be useful tools to screen for drugs or molecules that bind to the channel and could be used to prevent damage to hair cells.
###
NIDCD supports and conducts research and research training on the normal and disordered processes of hearing, balance, smell, taste, voice, speech and language and provides health information, based upon scientific discovery, to the public. For more information about NIDCD programs, see the Web site at www.nidcd.nih.gov.
About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.
NIH researchers identify key proteins of inner ear transduction channel
Discovery may accelerate advances in understanding and treating hearing loss
2011-11-22
ELSE PRESS RELEASES FROM THIS DATE:
October Issue of Proceedings of the IEEE Presents Most Comprehensive Metamaterials Analysis Ever Assembled
2011-11-22
The future of the metamaterials field shows great promise for achieving exotic new functions according to October's Proceedings of the IEEE, the most highly-cited general-interest journal in electrical engineering and computer science, approaching its 100th year of publication in 2012. Entitled "Metamaterials: Fundamentals and Applications in the Microwave and Optical Regimes," the 16-article issue, written by internationally renowned leaders in the field is packed with innovative research reports on potential new functions and insights that could impact many ...
Implanted neurons, grown in the lab, take charge of brain circuitry
2011-11-22
MADISON -- Among the many hurdles to be cleared before human embryonic stem cells can achieve their therapeutic potential is determining whether or not transplanted cells can functionally integrate into target organs or tissues.
Writing today (Monday, Nov. 21) in the Proceedings of the National Academy of Sciences, a team of Wisconsin scientists reports that neurons, forged in the lab from blank slate human embryonic stem cells and implanted into the brains of mice, can successfully fuse with the brain's wiring and both send and receive signals.
Neurons are specialized, ...
Boosting the aged immune response to flu virus
2011-11-22
As people age, their immune system becomes less robust. This makes them more susceptible to serious and frequently life-threatening infections with viruses that affect the respiratory tract such as influenza A virus (IAV). Stanley Perlman and colleagues, at the University of Iowa, Iowa City, have now identified a new immune system defect in aged mice that makes them more susceptible than young mice to developing severe clinical disease upon infection with respiratory viruses such as IAV. Importantly, they were able to reverse the defect by inhibiting the immune molecule ...
Conservatoryinfo.co.uk Introduces New Redesigned Website
2011-11-22
For businesses, having a signature look is important for brand awareness; however, when the evolving times call for a major change, Conservatoryinfo.co.uk knows how to do it right. After years of maintaining the same look of their website, Conservatoryinfo.co.uk implements a major redesign to improve its functionality, interface, and overall performance for users and search engines.
The new website provides an easy flow of information combined with appealing graphics that was launched last September 2011. It debuted with new features and built-in SEO elements in accordance ...
BRAF addiction of thyroid cancers makes them therapeutically vulnerable
2011-11-22
Papillary carcinoma is the most common form of thyroid cancer. Approximately one quarter of these carcinomas have mutations in the BRAF gene. The prevalence of such mutations is even greater in high-grade carcinomas, particularly those that are refractory to standard treatment, which is radioactive iodine (RAI). A team of researchers led by James Fagin, at Memorial Sloan-Kettering Cancer Center, New York, has now identified a way to potentially exploit the expression of BRAF by such cancers for therapeutic purposes.
Despite the prevalence of BRAF mutations in papillary ...
Expanding treatment options for Cushing disease
2011-11-22
Cushing disease is a hormone disorder that causes a diverse array of symptoms, including fat accumulation, high blood pressure, osteoporosis, muscle wasting, and ultimately death. It is caused by a tumor in the anterior pituitary gland that results in the secretion of excess amounts of adrenocorticotropic hormone (ACTH). Treatment options are essentially limited to surgical resection. However, tumors commonly recur, meaning that new treatment options are needed. A team of researchers, led by Shlomo Melmed, at Cedars-Sinai Medical Center, Los Angeles, has now identified ...
JCI online early table of contents: Nov. 21, 2011
2011-11-22
EDITOR'S PICK: Boosting the aged immune response to flu virus
As people age, their immune system becomes less robust. This makes them more susceptible to serious and frequently life-threatening infections with viruses that affect the respiratory tract such as influenza A virus (IAV). Stanley Perlman and colleagues, at the University of Iowa, Iowa City, have now identified a new immune system defect in aged mice that makes them more susceptible than young mice to developing severe clinical disease upon infection with respiratory viruses such as IAV. Importantly, they were ...
Tuning out: How brains benefit from meditation
2011-11-22
Experienced meditators seem to be able switch off areas of the brain associated with daydreaming as well as psychiatric disorders such as autism and schizophrenia, according to a new brain imaging study by Yale researchers.
Meditation's ability to help people stay focused on the moment has been associated with increased happiness levels, said Judson A. Brewer, assistant professor of psychiatry and lead author of the study published the week of Nov. 21 in the Proceedings of the National Academy of Sciences. Understanding how meditation works will aid investigation into ...
The Best Affiliate Marketing Companies Ranked by topseos.com for November 2011
2011-11-22
topseos.com, the independent authority on search vendors, has released their list of the best affiliate marketing companies for November 2011. An evaluation of affiliate marketing companies has led to the creation of a list of rankings showcasing the top ten affiliate marketing services in the online marketing industry. The process for evaluating the best affiliate marketing services includes the use of a set of evaluation criteria which consists of the five most important aspects of these services.
The Top 10 Affiliate Marketing Companies for November 2011 are:
1) ...
Cancer screening reform needed
2011-11-22
Since the National Cancer Institute developed the first guidelines on mammography screening over thirty years ago, advocacy and professional groups have developed guidelines focused on who should be screened, instead of communicating clearly the risks and benefits of screening, according to a commentary by Michael Edward Stefanek, Ph.D., the associate vice president of collaborative research in the office of the vice president at Indiana University, published online Nov. 21 in the Journal of the National Cancer Institute. Stefanek writes that too much time has been spent ...
LAST 30 PRESS RELEASES:
Hormone therapy reshapes the skeleton in transgender individuals who previously blocked puberty
Evaluating performance and agreement of coronary heart disease polygenic risk scores
Heart failure in zero gravity— external constraint and cardiac hemodynamics
Amid record year for dengue infections, new study finds climate change responsible for 19% of today’s rising dengue burden
New study finds air pollution increases inflammation primarily in patients with heart disease
AI finds undiagnosed liver disease in early stages
The American Society of Tropical Medicine and Hygiene and the Bill & Melinda Gates Foundation announce new research fellowship in malaria genomics in honor of professor Dominic Kwiatkowski
Excessive screen time linked to early puberty and accelerated bone growth
First nationwide study discovers link between delayed puberty in boys and increased hospital visits
Traditional Mayan practices have long promoted unique levels of family harmony. But what effect is globalization having?
New microfluidic device reveals how the shape of a tumour can predict a cancer’s aggressiveness
Speech Accessibility Project partners with The Matthew Foundation, Massachusetts Down Syndrome Congress
Mass General Brigham researchers find too much sitting hurts the heart
New study shows how salmonella tricks gut defenses to cause infection
Study challenges assumptions about how tuberculosis bacteria grow
NASA Goddard Lidar team receives Center Innovation Award for Advancements
Can AI improve plant-based meats?
How microbes create the most toxic form of mercury
‘Walk this Way’: FSU researchers’ model explains how ants create trails to multiple food sources
A new CNIC study describes a mechanism whereby cells respond to mechanical signals from their surroundings
Study uncovers earliest evidence of humans using fire to shape the landscape of Tasmania
Researchers uncover Achilles heel of antibiotic-resistant bacteria
Scientists uncover earliest evidence of fire use to manage Tasmanian landscape
Interpreting population mean treatment effects in the Kansas City Cardiomyopathy Questionnaire
Targeting carbohydrate metabolism in colorectal cancer: Synergy of therapies
Stress makes mice’s memories less specific
Research finds no significant negative impact of repealing a Depression-era law allowing companies to pay workers with disabilities below minimum wage
Resilience index needed to keep us within planet’s ‘safe operating space’
How stress is fundamentally changing our memories
Time in nature benefits children with mental health difficulties: study
[Press-News.org] NIH researchers identify key proteins of inner ear transduction channelDiscovery may accelerate advances in understanding and treating hearing loss