(Press-News.org) A Rice University laboratory has found a way to turn common carbon fiber into graphene quantum dots, tiny specks of matter with properties expected to prove useful in electronic, optical and biomedical applications.
The Rice lab of materials scientist Pulickel Ajayan, in collaboration with colleagues in China, India, Japan and the Texas Medical Center, discovered a one-step chemical process that is markedly simpler than established techniques for making graphene quantum dots. The results were published online this month in the American Chemical Society's journal Nano Letters.
"There have been several attempts to make graphene-based quantum dots with specific electronic and luminescent properties using chemical breakdown or e-beam lithography of graphene layers," said Ajayan, Rice's Benjamin M. and Mary Greenwood Anderson Professor of Mechanical Engineering and Materials Science and of Chemistry. "We thought that as these nanodomains of graphitized carbons already exist in carbon fibers, which are cheap and plenty, why not use them as the precursor?"
Quantum dots, discovered in the 1980s, are semiconductors that contain a size- and shape-dependent band gap. These have been promising structures for applications that range from computers, LEDs, solar cells and lasers to medical imaging devices. The sub-5 nanometer carbon-based quantum dots produced in bulk through the wet chemical process discovered at Rice are highly soluble, and their size can be controlled via the temperature at which they're created.
The Rice researchers were attempting another experiment when they came across the technique. "We tried to selectively oxidize carbon fiber, and we found that was really hard," said Wei Gao, a Rice graduate student who worked on the project with lead author Juan Peng, a visiting student from Nanjing University who studied in Ajayan's lab last year. "We ended up with a solution and decided to look at a few drops with a transmission electron microscope."
The specks they saw were bits of graphene or, more precisely, oxidized nanodomains of graphene extracted via chemical treatment of carbon fiber. "That was a complete surprise," Gao said. "We call them quantum dots, but they're two-dimensional, so what we really have here are graphene quantum discs." Gao said other techniques are expensive and take weeks to make small batches of graphene quantum dots. "Our starting material is cheap, commercially available carbon fiber. In a one-step treatment, we get a large amount of quantum dots. I think that's the biggest advantage of our work," she said.
Further experimentation revealed interesting bits of information: The size of the dots, and thus their photoluminescent properties, could be controlled through processing at relatively low temperatures, from 80 to 120 degrees Celsius. "At 120, 100 and 80 degrees, we got blue, green and yellow luminescing dots," she said.
They also found the dots' edges tended to prefer the form known as zigzag. The edge of a sheet of graphene -- the single-atom-thick form of carbon -- determines its electrical characteristics, and zigzags are semiconducting.
Their luminescent properties give graphene quantum dots potential for imaging, protein analysis, cell tracking and other biomedical applications, Gao said. Tests at Houston's MD Anderson Cancer Center and Baylor College of Medicine on two human breast cancer lines showed the dots easily found their way into the cells' cytoplasm and did not interfere with their proliferation.
"The green quantum dots yielded a very good image," said co-author Rebeca Romero Aburto, a graduate student in the Ajayan Lab who also studies at MD Anderson. "The advantage of graphene dots over fluorophores is that their fluorescence is more stable and they don't photobleach. They don't lose their fluorescence as easily. They have a depth limit, so they may be good for in vitro and in vivo (small animal) studies, but perhaps not optimal for deep tissues in humans.
"But everything has to start in the lab, and these could be an interesting approach to further explore for bioimaging," Romero Alburto said. "In the future, these graphene quantum dots could have high impact because they can be conjugated with other entities for sensing applications, too."
###Co-authors include Angel Marti, assistant professor of chemistry and bioengineering, postdoctoral research associates Zheng Liu and Liehui Ge, senior research scientist Lawrence Alemany and graduate student Xiaobo Zhan, all of Rice; Rice alumnus Li Song of Shinshu University, Japan; Bipin Kumar Gupta of the National Physical Laboratory, New Delhi, India, who worked at the Ajayan Lab on an Indo-US Science and Technology Forum fellowship; Guanhui Gao of the Ocean University of China; research technician Sajna Antony Vithayathil of Baylor College of Medicine; Benny Abraham Kaipparettu, a postdoctoral researcher at Baylor College of Medicine; Takuya Hayashi, an associate professor of engineering at Shinshu University, Japan; and Jun-Jie Zhu, a professor of chemistry at Nanjing University.
The research was supported by Nanoholdings, the Office of Naval Research MURI program on graphene, the Natural Science Foundation of China, the National Basic Research Program of China, the Indo-US Science and Technology Forum and the Welch Foundation.
Read the abstract at http://pubs.acs.org/doi/abs/10.1021/nl2038979
Images are available for download at
http://www.media.rice.edu/images/media/NewsRels/0111_HRTEM.jpg
http://www.media.rice.edu/images/media/NewsRels/0111_Imaging_3.jpg
http://www.media.rice.edu/images/media/NewsRels/0111_TEM.jpg
CAPTIONS
(HRTEM)
This transmission electron microscope image shows a graphene quantum dot with zigzag edges. The quantum dots can be created in bulk from carbon fiber through a chemical process discovered at Rice University. (Credit: Ajayan Lab/Rice University)
(Imaging 3)
Green-fluorescing graphene quantum dots created at Rice University surround a blue-stained nucleus in a human breast cancer cell. Cells were placed in a solution with the quantum dots for four hours. The dots, each smaller than 5 nanometers, easily passed through the cell membranes, showing their potential value for bioimaging. (Credit: Ajayan Lab/Rice University)
(TEM)
Dark spots on a transmission electron microscope grid are graphene quantum dots made through a wet chemical process at Rice University. The inset is a closeup of one dot. Graphene quantum dots may find use in electronic, optical and biomedical applications. (Credit: Ajayan Lab/Rice University)
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its "unconventional wisdom." With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is less than 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://www.rice.edu/nationalmedia/Rice.pdf.
Graphene quantum dots: The next big small thing
Rice University-led team creates tiny materials in bulk from carbon fiber
2012-01-13
ELSE PRESS RELEASES FROM THIS DATE:
Deaf sign language users pick up faster on body language
2012-01-13
Deaf people who use sign language are quicker at recognizing and interpreting body language than hearing non-signers, according to new research from investigators at UC Davis and UC Irvine.
The work suggests that deaf people may be especially adept at picking up on subtle visual traits in the actions of others, an ability that could be useful for some sensitive jobs, such as airport screening.
"There are a lot of anecdotes about deaf people being better able to pick up on body language, but this is the first evidence of that," said David Corina, professor in the UC ...
How the brain routes traffic for maximum alertness
2012-01-13
A new UC Davis study shows how the brain reconfigures its connections to minimize distractions and take best advantage of our knowledge of situations.
"In order to behave efficiently, you want to process relevant sensory information as fast as possible, but relevance is determined by your current situation," said Joy Geng, assistant professor of psychology at the UC Davis Center for Mind and Brain.
For example, a flashing road sign alerts us to traffic merging ahead; or a startled animal might cue you to look out for a hidden predator.
When concentrating on a specific ...
Breakthrough model reveals evolution of ancient nervous systems through seashell colors
2012-01-13
PITTSBURGH—Determining the evolution of pigmentation patterns on mollusk seashells—which could aid in the understanding of ancient nervous systems—has proved to be a challenging feat for researchers. Now, however, through mathematical equations and simulations, University of Pittsburgh and University of California, Berkeley, researchers have used 19 different species of the predatory sea snail Conus to generate a model of the pigmentation patterns of mollusk shells.
"There is no evolutionary record of nervous systems, but what you're seeing on the surface of seashells ...
Study finds chlorophyll can help prevent cancer - but questions traditional research methods
2012-01-13
CORVALLIS, Ore. – A recent study at Oregon State University found that the chlorophyll in green vegetables offers protection against cancer when tested against the modest carcinogen exposure levels most likely to be found in the environment.
However, chlorophyll actually increases the number of tumors at very high carcinogen exposure levels.
Beyond confirming the value of chlorophyll, the research raises serious questions about whether traditional lab studies done with mice and high levels of toxic exposure are providing accurate answers to what is a real health risk, ...
Anthrax capsule vaccine protects monkeys from lethal infection
2012-01-13
Vaccination with the anthrax capsule—a naturally occurring component of the bacterium that causes the disease—protected monkeys from lethal anthrax infection, according to U.S. Army scientists. The study, which appears in the Jan. 20th print edition of the journal VACCINE, represents the first successful use of a non-toxin vaccine to protect monkeys from the disease.
Bacillus anthracis, the bacterium that causes anthrax, is recognized as one of the most serious bioterrorism threats. It produces three main components that allow it to do harm—lethal toxin, edema toxin, ...
NIH scientists identify novel approach to view inner workings of viruses
2012-01-13
Since the discovery of the microscope, scientists have tried to visualize smaller and smaller structures to provide insights into the inner workings of human cells, bacteria and viruses. Now, researchers at the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), part of the National Institutes of Health, have developed a new way to see structures within viruses that were not clearly seen before. Their findings are reported in the Jan. 13 issue of Science.
Cryo-electron microscopy (cryo-EM) is a technique that allows scientists to image very ...
The microbiome and disease: Gut bacteria influence the severity of heart attacks in rats
2012-01-13
Bethesda, MD—New research published online in the FASEB Journal (http://www.fasebj.org) suggests that the types and levels of bacteria in the intestines may be used to predict a person's likelihood of having a heart attack, and that manipulating these organisms may help reduce heart attack risk. This discovery may lead to new diagnostic tests and therapies that physicians use to prevent and treat heart attacks. In addition, this research suggests that probiotics may be able to protect the heart in patients undergoing heart surgery and angioplasty.
"Our discovery is a ...
Tropical Storm Heidi's temperature, cloud heights and rainfall grabbed by NASA satellites
2012-01-13
NASA satellites got a look inside Tropical Storm Heidi over the last several days and provided data that enabled forecasters at the Joint Typhoon Warning Center to know she was going to strengthen before making landfall, and she did.
Two instruments on NASA's Aqua satellite and two instruments on NASA's TRMM satellite provided forecasters with the rate at which rain was falling within Heidi, cloud heights and cloud and sea surface temperatures. All of those factors are added together to determine the behavior of a tropical cyclone. NASA data showed warm sea surface temperatures ...
NASA study shows health, food security benefits from climate change actions
2012-01-13
A new study led by a NASA scientist highlights 14 key air pollution control measures that, if implemented, could slow the pace of global warming, improve health and boost agricultural production.
The research, led by Drew Shindell of NASA's Goddard Institute for Space Studies (GISS) in New York City, finds that focusing on these measures could slow mean global warming 0.9 ºF (0.5ºC) by 2050, increase global crop yields by up to 135 million metric tons per season and prevent hundreds of thousands of premature deaths each year. While all regions of the world would benefit, ...
Educating women about heart attacks could save lives
2012-01-13
BINGHAMTON, NY – Heart attacks in women go largely unrecognized 30 to 55 percent of the time and those who miss the warning signs and fail or delay getting help, run the risk of death or grave disability. But researchers at Binghamton University and SUNY Upstate Medical University have developed an educational program they believe will shorten the time to treatment and ultimately, save lives.
Women often don't have the same kind of chest pains that men generally experience during a heart attack. They may also have a range of other symptoms, not all of them easy for the ...
LAST 30 PRESS RELEASES:
Populations overheat as major cities fail canopy goals: new research
By exerting “crowd control” over mouse cells, scientists make progress towards engineering tissues
First American Gastroenterological Association living guideline for moderate-to-severe ulcerative colitis
Labeling cell particles with barcodes
Groundwater pumping drives rapid sinking in California
Neuroscientists discover how the brain slows anxious breathing
New ion speed record holds potential for faster battery charging, biosensing
Haut.AI explores the potential of AI-enhanced fluorescence photography for non-invasive skin diagnostics
7-year study reveals plastic fragments from all over the globe are rising rapidly in the North Pacific Garbage Patch
New theory reveals the shape of a single photon
We could soon use AI to detect brain tumors
TAMEST recognizes Lyda Hill and Lyda Hill Philanthropies with Kay Bailey Hutchison Distinguished Service Award
Establishment of an immortalized red river hog blood-derived macrophage cell line
Neural networks: You might not need to buy every ticket to win the lottery
Healthy New Town: Revitalizing neighborhoods in the wake of aging populations
High exposure to everyday chemicals linked to asthma risk in children
How can brands address growing consumer scepticism?
New paradigm of quantum information technology revealed through light-matter interaction!
MSU researchers find trees acclimate to changing temperatures
World's first visual grading system developed to combat microplastic fashion pollution
Teenage truancy rates rise in English-speaking countries
Cholesterol is not the only lipid involved in trans fat-driven cardiovascular disease
Study: How can low-dose ketamine, a ‘lifesaving’ drug for major depression, alleviate symptoms within hours? UB research reveals how
New nasal vaccine shows promise in curbing whooping cough spread
Smarter blood tests from MSU researchers deliver faster diagnoses, improved outcomes
Q&A: A new medical AI model can help spot systemic disease by looking at a range of image types
For low-risk pregnancies, planned home births just as safe as birth center births, study shows
Leaner large language models could enable efficient local use on phones and laptops
‘Map of Life’ team wins $2 million prize for innovative rainforest tracking
Rise in pancreatic cancer cases among young adults may be overdiagnosis
[Press-News.org] Graphene quantum dots: The next big small thingRice University-led team creates tiny materials in bulk from carbon fiber