(Press-News.org) New evidence this week supports a theory developed five years ago at Rice University to explain the electrical properties of several classes of materials -- including unconventional superconductors -- that have long vexed physicists.
The findings in this week's issue of Nature Materials uphold a theory first offered in 2006 by physicist Qimiao Si, Rice's Harry C. and Olga K. Wiess Professor of Physics and Astronomy. They represent an important step toward the ultimate goal of creating a unified theoretical description of the quantum behavior of high-temperature superconductors and related materials.
"We now have a materials-based global phase diagram for heavy-fermion systems -- a kind of road map that helps relate the predicted behavior of several different classes of materials," Si said. "This is an important step on the road to a unified theory."
High-temperature superconductivity is one of the greatest unsolved mysteries of modern physics. In the mid-1980s, experimental physicists discovered several compounds that could conduct electricity with zero resistance. The effect happens only when the materials are very cold, but still far above the temperatures required for the conventional superconductors that were discovered and explained earlier in the 20th century.
In searching for a way to explain high-temperature superconductivity, physicists discovered that the phenomenon was one of a larger family of behaviors called "correlated electron effects."
In correlated electron processes, the electrons in a superconductor behave in lockstep, as if they were a single entity rather than a large collection of individuals. These processes bring about tipping points called "quantum critical points" at which materials change phases. These phase changes are similar to thermodynamic phase changes that occur when ice melts or water boils, except they are governed by quantum mechanics.
Materials at the border of magnetism and superconductivity -- including heavy-fermion metals and high-temperature superconductors -- are the prototype systems for quantum critical points.
In 2001, Si and colleagues proposed what has now become the dominant theory to explain correlated electron effects in heavy-fermion systems. Their "local quantum critical" theory concluded that both magnetism and charged electron excitations play a role in bringing about quantum critical points.
Experiments over the past decade have provided overwhelming evidence for the role of both effects. In addition, experiments have shown that quantum critical points fall into different classes for different types of materials, including several nonsuperconductors.
"In light of the experimental evidence, an important question arose as to whether a unifying principle might exist that could explain the behavior of all the classes of quantum critical points that had been observed in heavy-fermion materials," Si said.
In 2006, Si put forward a new theory aimed at doing just that. Experiments two years ago confirmed that the theoretical global phase diagram could explain the quantum critical behavior of YRS -- composites of ytterbium, rhodium and silicon that are among the most-studied quantum critical materials.
In the new Nature Materials paper, a group led by experimental physicist Silke Paschen of Vienna University of Technology in Vienna examined a new material made of cerium, palladium and silicon (CPS). Both YRS and CPS are heavy-fermion compounds; however, YRS is a composite of stacked two-dimensional layers, and CPS has a three-dimensional crystalline structure.
"In YRS, the collapse of charged electronic excitations occurs at the onset of magnetic order," Paschen said. "In CPS, we established a similar collapse of the electronic excitations but inside an ordered phase."
To explain the difference between the observations in CPS and YRS, Si and co-author Rong Yu, a Rice postdoctoral researcher, invoked the effect of dimensionality.
"In systems like YRS, reduced dimensionality enhances the quantum fluctuations between the electrons, and that enhancement influences their collective behavior," Yu said. "In the three-dimensional material, we found that the quantum fluctuations were reduced, and this affected the quantum critical point and the correlated behavior in a way that was predicted by theory."
Si said the linkage between the quantum critical points of CPS and YRS is important for the ultimate question of how to classify and unify quantum criticality.
"Our study not only highlights a rich variety of quantum critical points but also indicates an underlying universality," he said.
Si said it is important to test the theory's ability to correctly predict the behavior of even more materials, and his group is working with Paschen and other experimentalists via the International Collaborative Center on Quantum Matter to carry out those tests.
###Co-authors on the Nature Materials paper include J. Custers, K.-A. Lorenser, M. Müller, A. Prokofiev, A. Sidorenkio and H. Winkler, all of Vienna University of Technology; A.M. Strydom of the University of Johannesburg in South Africa; and Y. Shimura and T. Sakakibara, both of the University of Tokyo. The research was supported by the European Research Council, the Austrian Science Foundation, the National Science Foundation and the Welch Foundation.
A high-resolution image is available for download at:
http://www.media.rice.edu/images/media/NewsRels/0104_lorenzer_sidorenko2.JPG
CAPTION: Physics graduate students Karl-Anton Lorenzer (left) and Andrey Sidorenko adjust equipment at Vienna University of Technology.
CREDIT: F. Aigner/TU Wien
A high-resolution image is available for download at:
http://www.media.rice.edu/images/media/NewsRels/0104_winkler_sidorenko.JPG
CAPTION: Vienna University of Technology graduate students Hannes Winkler (left) and Andrey Sidorenko are co-authors of a new paper that sheds light on "correlated electron effects" in heavy fermion materials.
CREDIT: F. Aigner/TU Wien
The Nature Materials paper is available at:
http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat3214.html
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its "unconventional wisdom." With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is less than 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to www.rice.edu/nationalmedia/Rice.pdf.
Rice's 'quantum critical' theory gets experimental boost
Study represents step toward unified theory for quantum phase transformation
2012-01-13
ELSE PRESS RELEASES FROM THIS DATE:
ISG15: A novel therapeutic target to slow breast cancer cell motility
2012-01-13
Interferon-stimulated gene 15 (ISG15), a ubiquitin like protein, is highly elevated in a variety of cancers including breast cancer. How the elevated ISG15 pathway contributes to tumorigenic phenotypes remains unclear and is the subject of a study published in the January 2012 issue of Experimental Biology and Medicine. Dr. Shyamal Desai and her co-investigators from the Louisiana State University School of Medicine in New Orleans, the University of Pennsylvania School of Medicine in Philadelphia, and the Robert Wood Johnson School of Medicine in New Jersey report that ...
Calculating what's in the universe from the biggest color 3-D map
2012-01-13
Since 2000, the three Sloan Digital Sky Surveys (SDSS I, II, III) have surveyed well over a quarter of the night sky and produced the biggest color map of the universe in three dimensions ever. Now scientists at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and their SDSS colleagues, working with DOE's National Energy Research Scientific Computing Center (NERSC) based at Berkeley Lab, have used this visual information for the most accurate calculation yet of how matter clumps together – from a time when the universe was only half its ...
Stenting for stroke prevention becoming safer in high-risk patients
2012-01-13
MADISON –Placing a stent in a key artery in the neck is safer than ever in patients ineligible for the standard surgical treatment of carotid artery disease, according to a new study published online today in the Journal of Vascular Surgery.
A team of researchers led by Dr. Jon Matsumura, head of the vascular surgery division at University of Wisconsin School of Medicine and Public Health, found the clinical trial PROTECT (Carotid Artery Stenting with Distal Embolic Protection with Improved System) had the lowest rate of complications ever in patients considered high ...
Evolution is written all over your face
2012-01-13
Why are the faces of primates so dramatically different from one another?
UCLA biologists working as "evolutionary detectives" studied the faces of 129 adult male primates from Central and South America, and they offer some answers in research published today, Jan. 11, in the early online edition of the journal Proceedings of the Royal Society B. The faces they studied evolved over at least 24 million years, they report.
"If you look at New World primates, you're immediately struck by the rich diversity of faces," said Michael Alfaro, a UCLA associate professor ...
UMass Amherst chemical engineers boost petrochemical output from biomass by 40 percent
2012-01-13
AMHERST, Mass. – Chemical engineers at the University of Massachusetts Amherst, using a catalytic fast pyrolysis process that transforms renewable non-food biomass into petrochemicals, have developed a new catalyst that boosts the yield for five key "building blocks of the chemical industry" by 40 percent compared to previous methods. This sustainable production process, which holds the promise of being competitive and compatible with the current petroleum refinery infrastructure, has been tested and proven in a laboratory reactor, using wood as the feedstock, the research ...
Hubble breaks new ground with discovery of distant exploding star
2012-01-13
NASA's Hubble Space Telescope has looked deep into the distant universe and detected the feeble glow of a star that exploded more than 9 billion years ago. The sighting is the first finding of an ambitious survey that will help astronomers place better constraints on the nature of dark energy, the mysterious repulsive force that is causing the universe to fly apart ever faster.
"For decades, astronomers have harnessed the power of Hubble to unravel the mysteries of the universe," said John Grunsfeld, associate administrator for NASA's Science Mission Directorate in Washington. ...
LSU professor discovers world's tiniest vertebrate
2012-01-13
BATON ROUGE – LSU's Chris Austin recently discovered two new species of frogs in New Guinea, one of which is now the world's tiniest known vertebrate, averaging only 7.7 millimeters in size – less than one-third of an inch. It ousts Paedocypris progenetica, an Indonesian fish averaging more than 8 millimeters, from the record. Austin, leading a team of scientists from the United States including LSU graduate student Eric Rittmeyer, made the discovery during a three-month long expedition to the island of New Guinea, the world's largest and tallest tropical island.
"It ...
New species of tiny frog is world's smallest vertebrate
2012-01-13
Researchers have found two new frog species in New Guinea, one of which is the new smallest known vertebrate on Earth. The results are reported in the Jan. 11 issue of the online journal PLoS ONE, and the team of researchers was led by Christopher Austin of Louisiana State University.
The new smallest vertebrate species is called Paedophryne amauensis, named after Amau Village in Papua New Guinea, where it was found. The adult body size for these frogs ranges from just 7.0 to 8.0 millimeters.
According to Dr. Austin, the discovery "is of considerable interest to biologists ...
Selectively stopping glutathione sensitizes brain tumors to chemotherapy
2012-01-13
Brain cancer cells are particularly resistant to chemotherapy — toxins enter the cells, but before the toxins can kill, cancer cells quickly pump them back outside. In fact, brain cancer cells are even better than healthy cells at cleaning themselves. This means that when hit with chemotherapy, healthy cells tend to die before brain cancer cells. Especially in the brain, killing healthy cells is bad.
Researchers at the University of Colorado Cancer Center have discovered a way to turn off the pumps — only in brain cancer cells and not in their healthy neighbors. Promising ...
Diet counts: Iron intake in teen years can impact brain in later life
2012-01-13
Iron is a popular topic in health news. Doctors prescribe it for medical reasons, and it's available over the counter as a dietary supplement. And while it's known that too little iron can result in cognitive problems, it's also known that too much promotes neurodegenerative diseases.
Now, researchers at UCLA have found that in addition to causing cognitive problems, a lack of iron early in life can affect the brain's physical structure as well.
UCLA neurology professor Paul Thompson and his colleagues measured levels of transferrin, a protein that transports iron ...
LAST 30 PRESS RELEASES:
New perspective highlights urgent need for US physician strike regulations
An eye-opening year of extreme weather and climate
Scientists engineer substrates hostile to bacteria but friendly to cells
New tablet shows promise for the control and elimination of intestinal worms
Project to redesign clinical trials for neurologic conditions for underserved populations funded with $2.9M grant to UTHealth Houston
Depression – discovering faster which treatment will work best for which individual
Breakthrough study reveals unexpected cause of winter ozone pollution
nTIDE January 2025 Jobs Report: Encouraging signs in disability employment: A slow but positive trajectory
Generative AI: Uncovering its environmental and social costs
Lower access to air conditioning may increase need for emergency care for wildfire smoke exposure
Dangerous bacterial biofilms have a natural enemy
Food study launched examining bone health of women 60 years and older
CDC awards $1.25M to engineers retooling mine production and safety
Using AI to uncover hospital patients’ long COVID care needs
$1.9M NIH grant will allow researchers to explore how copper kills bacteria
New fossil discovery sheds light on the early evolution of animal nervous systems
A battle of rafts: How molecular dynamics in CAR T cells explain their cancer-killing behavior
Study shows how plant roots access deeper soils in search of water
Study reveals cost differences between Medicare Advantage and traditional Medicare patients in cancer drugs
‘What is that?’ UCalgary scientists explain white patch that appears near northern lights
How many children use Tik Tok against the rules? Most, study finds
Scientists find out why aphasia patients lose the ability to talk about the past and future
Tickling the nerves: Why crime content is popular
Intelligent fight: AI enhances cervical cancer detection
Breakthrough study reveals the secrets behind cordierite’s anomalous thermal expansion
Patient-reported influence of sociopolitical issues on post-Dobbs vasectomy decisions
Radon exposure and gestational diabetes
EMBARGOED UNTIL 1600 GMT, FRIDAY 10 JANUARY 2025: Northumbria space physicist honoured by Royal Astronomical Society
Medicare rules may reduce prescription steering
Red light linked to lowered risk of blood clots
[Press-News.org] Rice's 'quantum critical' theory gets experimental boostStudy represents step toward unified theory for quantum phase transformation