PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Mars: The glass planet? Plus: Global climate change on Mars examined and more new Geology science

Geology articles posted online ahead of print March 26, 2012

2012-03-29
(Press-News.org) Boulder, Colo., USA – Topics in the 26 March posting of Geology include anthropogenic impacts on the Indus River into the Arabian Sea; possible electrical conductivity beneath the Yellowstone hotspot track; mountain-forming volcanoes and deadly debris flows; melting beneath the Colorado Plateau; widespread weathered glass on Mars; and a new view into Mars' global aqueous history.

Highlights are provided below. Representatives of the media may obtain complimentary copies of Geology articles by contacting Christa Stratton at the address above. Abstracts for the complete issue of Geology are available at http://geology.gsapubs.org/.

Please discuss articles of interest with the authors before publishing stories on their work, and please make reference to Geology in articles published. Contact Christa Stratton for additional information or assistance.

Non-media requests for articles may be directed to GSA Sales and Service, gsaservice@geosociety.org.



Impact of Indus River discharge on productivity and preservation of organic carbon in the Arabian Sea over the twentieth century
Andreas Lückge et al., Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), 30655 Hannover, Germany. Posted online 26 March 2012; doi: 10.1130/G32608.1.

Coastal zones play an important role in the carbon cycle, because the amount of riverine materials and nutrients brought to the sea affects the high biological productivity nearshore. The fixation of atmospheric carbon and subsequent burial of marine organic matter in these ocean areas contributes to the global carbon cycle. But little direct evidence exists that can be used to clearly document the marine response to changes in the modern dynamics of large rivers. Anthropogenic activity during the past century, like changes in land use and the construction of river dams and irrigation facilities, has drastically decreased the discharge rate of suspensions and dissolved nutrients by the Indus River into the Arabian Sea off Pakistan. In this study, Andreas Lückge and colleagues found organic and inorganic indicators in the sediment that demonstrate that past changes in Indus River discharge have strongly impacted local productivity patterns. Between 1890 and 1998, the period over which this man-made reduction of Indus River discharge to the ocean occurred, primary productivity off the Pakistan coast seems to have decreased by more than a third. Over the same period, the regional oxygen minimum zone weakened, increasing the supply of oxygen to the sediments and reducing the burial of organic matter.



High-pressure granulites at the dawn of the Proterozoic
Jade R. Anderson et al., Centre for Tectonics, Resources and Exploration (TRaX), University of Adelaide, Adelaide SA 5005, Australia. Posted online 26 March 2012; doi: 10.1130/G32854.1.

The preservation of high-pressure metamorphism is rare in the ancient geological record. Jade Anderson and colleagues examine high grade metamorphic rocks from southern India and constrain that metamorphism occurred 2.49-2.47 billion years ago, at an estimated pressure of approx. 14-16 kbar and temperature of approx. 820-860 degrees Celsius. The estimated pressure and temperature of metamorphism indicates that the crust was capable of thickening to 45-50 km or thicker. Such crustal thickening provides support for a shift in the strength of the lithosphere at the Archean-Paleoproterozoic transition.



Disequilibrium melting during crustal anatexis and implications for modeling open magmatic systems
Claire L. McLeod et al., Northern Centre for Isotopic and Elemental Tracing (NCIET), Dept. of Earth Sciences, Durham University, South Road, Durham DH1 3LE, UK. Posted online 26 March 2012; doi: 10.1130/G33000.1.

Assessing the degree to which a crustal component has played a role during magmatic differentiation is often challenging, as is determining the nature of any potential crustal contaminant(s). Claire McLeod and colleagues assessed the assumption that the crustal contaminant in these open magmatic systems is a single composition through in-situ analysis of quenched anatectic melt trapped within its crustal source. Their results show significant chemical and Sr-isotopic disequilibrium between melt and source over submillimeter-length scales in a natural system. The isotopic disequilibrium between melt and source is understood to reflect the melting of minerals with different Rb/Sr (and therefore 87Sr/86Sr) more quickly than the isotopic composition can diffusively equilibrate between melt and minerals. McLeod and colleagues' results suggest that the mechanism of crustal anatexis produces contaminating melts that are geochemically heterogeneous both spatially and temporally. Furthermore, time scales of Sr diffusion and anatectic melt segregation promote the preservation of isotopic disequilibrium at the micro (submillimeter) and macro (crustal) scale. This highlights the need for detailed microscopic investigations coupled with petrogenetic modeling in order to develop more robust characterization and quantification of contamination in open magmatic systems.



Crust and upper mantle electrical conductivity beneath the Yellowstone hotspot track
A. Kelbert et al., College of Earth, Ocean and Atmospheric Sciences, Oregon State University, 104 CEOAS Admin Building, Corvallis, Oregon 97331, USA. Posted online 26 March 2012; doi: 10.1130/G32655.1.

This study uses high-quality electromagnetic data from the EarthScope USArray project to obtain detailed 3-D images of electrical resistivity in the crust and upper mantle beneath the Yellowstone-Snake River Plain volcanic province (Idaho and Wyoming, United States). A. Kelbert and colleagues note that the lowest resistivities in the area can only plausibly be explained by partial melt and/or fluids, providing valuable new information about the distribution of these phases deep within the Earth beneath the volcanic system. Unexpectedly, in light of the mantle plume models often used to explain Yellowstone volcanism, the electromagnetic data imply that there is no interconnected melt in the lower crust and uppermost mantle directly beneath the modern Yellowstone caldera. Instead, low resistivities consistent with 1%-3% melt in the uppermost mantle (depths of 40-80 km) extend at least 200 km southwest of Yellowstone. Shallower areas of reduced resistivity extend upward into the mid-crust around the edges of the seemingly impermeable Snake River Plain province, including beneath Yellowstone. Kelbert and colleagues suggest that the elevated temperatures beneath the active volcanic center have resulted in greater permeability, allowing magma to ascend to shallower depths and pool in the crust. Little melt is entering the system from below at present, perhaps due to intermittency of supply.



Short-term episodicity of Archaean plate tectonics
Jean-François Moyen, UMR 6524 CNRS and Université Jean-Monnet, 23 rue du Dr Michelon, 42023 Saint-Etienne, France., Durham DH1 3LE, UK; and Jeroen van Hunen Durham University. Posted online 26 March 2012; doi: 10.1130/G32894.1.

Plate tectonics, the dominant process shaping Earth as we know it today, may not have existed throughout Earth's history. Indeed, the interior of our planet (the mantle) cools progressively, by perhaps 300 degrees Celsius over the past 3.0 billion years. Numerical calculations reveal that in Archaean times (4.0-2.5 billion years ago), the mantle was too hot to support stable, long-lived plate tectonics. Rather, Jean-François Moyen and Jeroen van Hunen suggest that subduction -- a key component of plate tectonics, with cold, rigid plates sinking from the surface down into the mantle -- was an episodic process, stopping and starting frequently. Evidence for this episodicity is found in rocks from old geological units such as the Abitibi province of the Canadian Shield, where Moyen and van Hunen describe short, repeated, episodic bursts of subduction related lavas interlayered in non-subduction rocks. They propose that plate tectonics started progressively on Earth by more and more frequent, long-lived, and large-sized subduction events progressively evolving into the stable, large structures observed today.



Energy growth in laharic mass flows
Gert Lube et al., Institute of Natural Resources, Massey University, P.B. 11 222, Palmerston North, New Zealand. Posted online 26 March 2012; doi: 10.1130/G32818.1.

Lahars, debris flows, and sediment-rich floods are frequent and deadly hazards at all mountain-forming volcanoes. Their hazard potential is traditionally assessed through mass-conserving closed system models, where peak conversion rates of potential energy to mechanical energy and hence maximum destruction potential are predicted to occur on the steepest volcano flanks. This belies evidence of extremely high-energy and deadly catastrophes caused by such flows at large distances from volcanoes. Gert Lube and colleagues use the first high-resolution record of a moving lahar to develop a new model of the temporally and spatially variable mass-flow structure. They show that bulk flow energy can grow dramatically in such systems over tens to hundreds of kilometers via momentum transfers from the lahar into water and particles along its path. Lube and colleagues also demonstrate that dynamic transformations of such flows and their ultimate runout are primarily controlled by the mass flow front.



Melting under the Colorado Plateau, USA
Mary R. Reid et al., School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, Arizona 86011-4099, USA. Posted online 30 Marc 2012; doi: 10.1130/G32619.1.

Relatively young volcanoes dot the landscape of the Colorado Plateau -- a 130,000-square-mile region that straddles Colorado, Utah, Arizona and New Mexico, USA. Compared to volcanism at tectonically active plate boundaries, the origin of volcanism within continental interiors like the Colorado Plateau is poorly understood. Mary R. Reid and colleagues assess recent models for generating molten rock under the Colorado Plateau using an integrated geophysical and geochemical approach. Chemical data for Colorado Plateau volcanic fields show that melts are derived from the uppermost mantle, at least 75 km below the surface. Some portions of this mantle layer may have been associated with the continent for approx. 1.7 billion years. Seismic data gathered by the massive USArray seismic observatory show that melts originate in relatively malleable mantle below the North American plate. Melts derived from shallower mantle conditions also represent proportionally larger degrees of partial melting, suggesting that mantle at depths of 75 to 100 km near the margins of the Colorado Plateau is apparently capable of rising plastically to cause decompression melting. To accommodate this upwelling, the North American plate may locally be extending, and cooler and denser portions of the lithosphere may be downwelling into the deeper mantle as drips or delaminations.



Widespread weathered glass on the surface of Mars
Briony Horgan and James F. Bell III, School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85281, USA. Posted online 26 March 2012; doi: 10.1130/G32755.1.

The surface of Mars exhibits numerous lava flows and other signs of effusive volcanism. Although models suggest that explosive volcanism should also have produced extensive deposits, direct evidence for large-scale explosive volcanism on Mars has been scarce. A new investigation by Briony Horgan and James F. Bell III of the mineralogy of dark regions covering more than ten million square kilometers in the northern hemisphere of Mars has revealed that these regions are dominantly composed of glass. The glass is most likely volcanic glass produced during explosive eruptions, and potential sources include volcano-ice interactions in the northern lowlands as well as ash deposits from the large martian shield volcanoes. The glass deposits also exhibit signs of weathering, indicating widespread interactions with liquid water. Under the hyper-arid climatic conditions Mars has experienced over the past three billion years or more, the most likely source of this water is melting ice or snow. These results suggest that explosive volcanism may be a major source of sediments on Mars, and that limited liquid water has been present at the surface of Mars even under long-term hyper-arid conditions.



Lithologic and glacially conditioned controls on regional debris-flow sediment dynamics
Francesco Brardinoni et al., Dipartimento di Scienze Geologiche e Geotecnologie, Università degli Studi di Milano-Bicocca, Milan, Italy. Posted online 26 March 2012; doi: 10.1130/G33106.1.

Debris flow is an efficient process of sediment transfer from slope base to piedmont depositional fans in mountain drainage basins. To advance understanding of debris-flow sediment dynamics at the regional scale, Francesco Brardinoni and colleagues analyze a historical (1998-2009) database of debris flows from 77 basins of Alto Adige Province, northeastern Italy. By combining information on event volumetric deposition, high-resolution digital topography, and Quaternary sediment mapping, they are able to link debris-flow sediment flux to morphometry, lithologic variability, and sediment availability.



Picrites in central Hokkaido: Evidence of extremely high temperature magmatism in the Late Jurassic ocean recorded in an accreted oceanic plateau
Yuji Ichiyama et al., Data Research Center for Marine-Earth Sciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 3173-25 Showa-machi, Kanazawa-ku, Yokohama 236-0001, Japan. Posted online 26 March 2012; doi: 10.1130/G32752.1.

The Sorachi-Yezo belt, central Hokkaido, Japan, is composed of voluminous tholeiitic basaltic volcanics, and has been thought to be accreted fragments of an oceanic plateau formed in the Late Jurassic Pacific Ocean. Picrites have been reported as pillow lava and hyaloclastite from the Sorachi-Yezo belt. Authors Yuji Ichiyama of the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) and colleagues present a detailed study of these pricrites and show that they are divided into two groups that are chemically akin to the Neoarchean komatiites and Gorgona komatiites and Picrites. This indicates different melting regimes in an extremely hot mantle plume. The authors conclude that Sorachi-Yezo picrites provide evidence for extremely high temperature magmatism, like that of Archean komatiite caused by melting of the hottest mantle plume among the Phanerozoic oceanic large igneous provinces.



From crucible to graben in 2.3 Ma: A high-resolution geochronological study of porphyry life cycles, Boyongan Bayugo copper-gold deposits, Philippines
David P. Braxton et al., Centre for Ore Deposit Research, University of Tasmania, Private Bag 126, Hobart, 7001 Tasmania, Australia. Posted online 26 March 2012; doi: 10.1130/G33125.1.

The Boyongan and Bayugo porphyry copper-gold deposits are part of a belt of gold-rich copper deposits in the Surigao district of northeast Mindanao, Philippines. The detailed age relationships described in this study by David P. Braxton and colleagues provide insight into the geologically short life cycles that characterize porphyry formation in dynamic arc environments.



Atmospheric origin of Martian interior layered deposits: Links to climate change and the global sulfur cycle
Joseph Michalski, Planetary Science Institute, 1700 E. Ft. Lowell, Suite 106, Tucson, Arizona 85719, USA; and Paul B. Niles. Posted online 26 March 2012; doi: 10.1130/G32971.1.

Since the first photogeologic exploration of Mars, vast mounds of layered sediments found within the Valles Marineris troughs have remained unexplained. Recent spectroscopic results showing that these materials contain coarse-grained hematite and sulfate suggest that they are fundamentally similar to layered sulfate deposits seen elsewhere on Mars and are therefore a key piece of Mars' global aqueous history. Joseph Michalski and Paul Niles constrain the origin of these interior layered deposits (ILDs) by considering two models: (1) formation of the ILDs by groundwater upwelling, which requires that a significant fraction of the global Martian sulfur budget was concentrated in the Valles Marineris at the time the ILDs formed; (2) an alternate model in which the ILDs formed in a configuration similar to what is observed today through atmospherically driven deposition of ice, dust, and volcanogenic sulfuric acid. The first requires that a significant fraction of the global Martian sulfur budget was concentrated in the Valles Marineris at the time the ILDs formed. Michalski and Niles favor the second model, which they note is easily compatible with the global sulfur budget and does not require significant erosion rates or large volumes of liquid water. They propose that formation of sulfate-rich layered sediments on Mars was governed through time by volcanogenic SO2 and H2O emission rates and dust production against a backdrop of obliquity variation in a largely cold and dry climate.

###

www.geosociety.org

END



ELSE PRESS RELEASES FROM THIS DATE:

New gene therapy approach developed for red blood cell disorders

2012-03-29
NEW YORK (March 27, 2012) -- A team of researchers led by scientists at Weill Cornell Medical College has designed what appears to be a powerful gene therapy strategy that can treat both beta-thalassemia disease and sickle cell anemia. They have also developed a test to predict patient response before treatment. This study's findings, published in PLoS ONE, represents a new approach to treating these related, and serious, red blood cells disorders, say the investigators. "This gene therapy technique has the potential to cure many patients, especially if we prescreen ...

GSA's Lithosphere puts together a rich mix of first quarter 2012 online articles

2012-03-29
Boulder, Colo., USA - Lithosphere topics include Deccan volcanism; river profiles in Eastern Papua, New Guinea; significant seismic hazard in the Camarillo fold belt, Southern California; mechanics of the San Jacinto and southern San Andreas faults; new evidence from the SAFOD core; chalcedony of the White River Group, South Dakota, Nebraska, and Colorado; and using seismic data to study the crust and upper mantle beneath the Blue Ridge Mountains in North Carolina. Lithosphere is the newest bimonthly publication of The Geological Society of America, printing February, ...

Map of substrate-kinase interactions may lead to more effective cancer drugs

Map of substrate-kinase interactions may lead to more effective cancer drugs
2012-03-29
WEST LAFAYETTE, Ind. - Later-stage cancers thrive by finding detours around roadblocks that cancer drugs put in their path, but a Purdue University biochemist is creating maps that will help drugmakers close more routes and develop better drugs. Kinase enzymes deliver phosphates to cell proteins in a process called phosphorylation, switching a cellular function on or off. Irregularities in phosphorylation can lead to uncontrolled cell growth and are a hallmark of cancer. Many successful cancer drugs are kinase inhibitors, which block the ability of a kinase to bind ...

Mud manifests history of clear water in murky Minnesota duck depot Lake Christina

2012-03-29
During peak migration days in the early 1900s, tens of thousands of canvasback ducks could be seen floating and diving on Minnesota's Lake Christina. Since midcentury, changes to the lake have diminished this grand, iconic spectacle. Restoring it will require both top-down control of life in the lake, and bottom-up management of the surrounding landscape. So says a team of Minnesota scientists calling on extensive modern records and 200 years of history trapped in sediment, in a report released online last week in the journal Ecological Applications. "Lake Christina ...

NASA satellite sees thunderstorms banding around developing system 96W

NASA satellite sees thunderstorms banding around developing system 96W
2012-03-29
A low pressure system that has been lingering in the western North Pacific Ocean for several days appears to be coming together today in infrared imagery from NASA's Aqua satellite. NASA's Aqua satellite passed over the low pressure area called "System 96W" on March 27 at 0547 UTC (1:47 a.m. EDT) and the Atmospheric Infrared Sounder (AIRS) instrument captured an infrared and visible look at the storm. On March 27, 2012 at 0600 UTC (2 a.m. EDT), System 96W was located in the western North Pacific Ocean about 205 miles north-northwest of Bandar Seri Begawan, Brunei, near ...

Nanostarfruits are pure gold for research

Nanostarfruits are pure gold for research
2012-03-29
HOUSTON -- (March 27, 2012) -- They look like fruit, and indeed the nanoscale stars of new research at Rice University have tasty implications for medical imaging and chemical sensing. Starfruit-shaped gold nanorods synthesized by chemist Eugene Zubarev and Leonid Vigderman, a graduate student in his lab at Rice's BioScience Research Collaborative, could nourish applications that rely on surface-enhanced Raman spectroscopy (SERS). The research appeared online this month in the American Chemical Society journal Langmuir. The researchers found their particles returned ...

Colorado Springs Dentist Offers Laser Dentistry Options to His Patients

2012-03-29
Dr. Ed Christiansen, Colorado Springs dentist, is pleased to introduce laser dentistry technology to his patients. The use of lasers is one of the most exciting advances in modern dentistry and Dr. Christiansen is one of a relatively small number of dentists to offer this service to their patients. "I am excited that we are able to better serve our patients through the use of laser technology. Laser treatments offer many benefits over older methods and I believe that the future will see dentists everywhere using this treatment," said Dr. Christiansen, family ...

Zombie Games 365 Unleashes 3 New Zombie Games to Terrify

2012-03-29
Zombie Games 365, a website that offers tons of free games featuring the new staple of horror movies, the zombie, has just today added three new games to its collection: Tomb Digger, Zombotron, and Towely Zombie Killer. The three games are all consistent with the ZombieGames365's mission, which is to always be creating fresh new original games that feature everyone's favorite horror movie monsters, zombies. Whenever you have a few minutes to spend or feel like you need to relax, Zombie Games 365 always has something new to try, and it never costs anything. This makes ...

NASA's TWINS and IBEX spacecraft observe solar storm from inside and outside Earth's magnetosphere

2012-03-29
For the first time, instrumentation aboard two NASA missions operating from complementary vantage points watched as a powerful solar storm spewed a two million-mile-per-hour stream of charged particles and interacted with the invisible magnetic field surrounding Earth, according to a paper published today in the Journal of Geophysical Research. The spacecraft, NASA's Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) and Interstellar Boundary Explorer (IBEX), observed the impact from inside and outside the Earth's magnetosphere, respectively. The energetic neutral ...

Ernst & Partners Announce Expansion of Law Firm with New Office in Woodstock, GA

Ernst & Partners Announce Expansion of Law Firm with New Office in Woodstock, GA
2012-03-29
Ernst & Partners, an Atlanta, GA law firm has opened a new office in Woodstock, GA. This expansion came in support of clients contacting the firm from Cherokee county looking for quality legal assistance. Woostock is located in the heart of Cherokee county and is considered a suburb of Atlanta. Recently it was classified as the tenth fastest-growing suburb in the United States. The up and coming community has a population of 23,896. Because of the new office location, new clients will have the opportunity to speak with a lawyer who understands their situation ...

LAST 30 PRESS RELEASES:

Many Roads Lead to… the embryo

Dining out with San Francisco’s coyotes

What’s the mechanism behind behavioral side effects of popular weight loss drugs?

How employee trust in AI drives performance and adoption

Does sleep apnea treatment influence patients’ risk of getting into car accidents?

Do minimum wage hikes negatively impact students’ summer employment?

Exposure to stress during early pregnancy affects offspring into adulthood

Curious blue rings in trees and shrubs reveal cold summers of the past — potentially caused by volcanic eruptions

New frontiers in organic chemistry: Synthesis of a promising mushroom-derived compound

Biodegradable nylon precursor produced through artificial photosynthesis

GenEditScan: novel k-mer analysis tool based on next-generation sequencing for foreign DNA detection in genome-edited products

Survey: While most Americans use a device to monitor their heart, few share that data with their doctor

Dolphins use a 'fat taste' system to get their mother’s milk

Clarifying the mechanism of coupled plasma fluctuations using simulations

Here’s what’s causing the Great Salt Lake to shrink, according to PSU study

Can DNA-nanoparticle motors get up to speed with motor proteins?

Childhood poverty and/or parental mental illness may double teens’ risk of violence and police contact

Fizzy water might aid weight loss by boosting glucose uptake and metabolism

Muscular strength and good physical fitness linked to lower risk of death in people with cancer

Recommendations for studying the impact of AI on young people's mental health  proposed by Oxford researchers

Trump clusters: How an English lit graduate used AI to make sense of Twitter bios

Empty headed? Largest study of its kind proves ‘bird brain’ is a misnomer

Wild baboons not capable of visual self-awareness when viewing their own reflection

$14 million supports work to diversify human genome research

New study uncovers key mechanism behind learning and memory

Seeing the unseen: New method reveals ’hyperaccessible’ window in freshly replicated DNA

Extreme climate pushed thousands of lakes in West Greenland ‘across a tipping point,’ study finds

Illuminating an asymmetric gap in a topological antiferromagnet

Global public health collaboration benefits Americans, SHEA urges continued support of the World Health Organization

Astronomers thought they understood fast radio bursts. A recent one calls that into question.

[Press-News.org] Mars: The glass planet? Plus: Global climate change on Mars examined and more new Geology science
Geology articles posted online ahead of print March 26, 2012