PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Locating ground zero

How the brain's emergency workers find the disaster area

Locating ground zero
2012-05-28
(Press-News.org) VIDEO: Microglia (green) move to the site of injury (arrow) to clear up debris.
Click here for more information.

Like emergency workers rushing to a disaster scene, cells called microglia speed to places where the brain has been injured, to contain the damage by 'eating up' any cellular debris and dead or dying neurons. Scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, have now discovered exactly how microglia detect the site of injury, thanks to a relay of molecular signals. Their work, published today in Developmental Cell, paves the way for new medical approaches to conditions where microglia's ability to locate hazardous cells and material within the brain is compromised.

"Considering that they help keep our brain healthy, we know surprisingly little about microglia," says Francesca Peri, who led the work. "Now, for the first time, we've identified the mechanism that allows microglia to detect brain injury, and how that emergency call is transmitted from neuron to neuron."

When an emergency occurs, cries can alert bystanders, who will dial the emergency number. A call will go out over the radio, and ambulances, police or fire engines in the area will respond as needed. In the brain, Peri and colleagues found, injured neurons send out their own distress cry: they release a molecule called glutamate. Neighbouring neurons sense that glutamate and respond by taking up calcium. As glutamate spreads out from the injury site, this creates a wave of calcium swallowing. Along that wave, as neurons take up calcium they release a third molecule, called ATP. When the wave comes within reach, a microglial cell detects that ATP and takes it as a call to action, moving in that direction – essentially tracing the wave backwards until it reaches the injury.

Scientists knew already that microglia can detect ATP, but this molecule doesn't last long outside of cells, so there were doubts about how ATP alone could be a signal that carried far enough to reach microglia located far from the site of injury. The trick, as Peri and colleagues discovered, is the long-lasting glutamate-driven calcium wave that can travel the length of the brain. Thanks to this wave, the ATP signal is not just emitted by the injured cells, but is repeatedly sent out by the neurons along the way, until it reaches microglia.

Dirk Sieger and Christian Moritz in Peri's lab took advantage of the fact that zebrafish have transparent heads, which allow scientists to peer down a microscope straight into the fish's brain. They used a laser to injure a few of the fish's brain cells, and watched fluorescently-labelled microglia move in on the injury. When they genetically engineered zebrafish to make neurons' calcium levels traceable under the microscope, too, the scientists were able to confirm that when the calcium wave reached microglia, these cells immediately started moving toward the injury.

Knowing all the steps in this process, and how they feed into each other, could help to design treatments to improve microglia's detection ability, which go awry in conditions such as Alzheimer's and Parkinson's diseases.

INFORMATION:

[Attachments] See images for this press release:
Locating ground zero

ELSE PRESS RELEASES FROM THIS DATE:

Gene therapy can correct forms of severe combined immunodeficiency

2012-05-28
Severe combined immunodeficiency is defect in the immune system that results in a loss of the adaptive immune cells known as B cells and T cells. Mutations in several different genes can lead to the development of severe combined immunodeficiency, including mutation of the adenosine deaminase (ADA) gene. Traditional treatment options, such as enzyme replacement therapy, are of limited efficacy, but bone marrow transplant from a compatible donor leads to a better response. A recent clinical trial indicated that gene therapy to insert the correct ADA gene in the patient's ...

A new strategy for developing meningitis vaccines

2012-05-28
Bacterial meningitis is an infection of the meninges, the protective membrane that covers the spinal cord and brain. Children, elderly patients and immunocompromised patients are at a higher risk for the development of severe bacterial meningitis. Recently, researchers at the University of Adelaide in Australia sought to identify new vaccine targets in Streptococcus pneumoniae, which is the most common cause of bacterial meningitis in the world. Led by Dr. Abiodun Ogunniyi, the research team developed a new method of screening for bacterial genes that are expressed during ...

Marked for destruction: Newly developed compound triggers cancer cell death

2012-05-28
The BCL-2 protein family plays a large role in determining whether cancer cells survive in response to therapy or undergo a form of cell death known as apoptosis. Cells are pressured toward apoptosis by expression of pro-apoptotic BCL-2 proteins. However, cancer cells respond to therapy by increasing expression of anti-apoptotic proteins, which bind and neutralize pro-apoptotic family members and mediate therapeutic resistance. Therefore, development of therapeutic strategies to neutralize resistance to apoptosis will be critical to clinical improvements. A research group ...

JCI early table of contents for May 24, 2012

2012-05-28
GENE THERAPY Gene therapy can correct forms of severe combined immunodeficiency Severe combined immunodeficiency is defect in the immune system that results in a loss of the adaptive immune cells known as B cells and T cells. Mutations in several different genes can lead to the development of severe combined immunodeficiency, including mutation of the adenosine deaminase (ADA) gene. Traditional treatment options, such as enzyme replacement therapy, are of limited efficacy, but bone marrow transplant from a compatible donor leads to a better response. A recent clinical ...

A boost in microRNA may protect against sepsis and other inflammatory diseases

2012-05-28
BOSTON, MA—Acute inflammatory diseases, such as sepsis, as well as chronic inflammatory diseases like diabetes and arthritis, develop as a result of sustained inflammation of the blood vessel wall. Researchers at Brigham and Women's Hospital (BWH) have discovered that a microRNA (small, non-coding RNA molecule) called miR-181b can reduce the inflammatory response that is responsible for such diseases. The findings, by researchers led by Mark Feinberg, MD from BWH and Harvard Medical School, will pave the way for new targets in the development of anti-inflammatory therapies. ...

Nuisance seaweed found to produce compounds with biomedical potential

2012-05-28
A seaweed considered a threat to the healthy growth of coral reefs in Hawaii may possess the ability to produce substances that could one day treat human diseases, a new study led by scientists at Scripps Institution of Oceanography at UC San Diego has revealed. An analysis led by Hyukjae Choi, a postdoctoral researcher in William Gerwick's laboratory at Scripps, has shown that the seaweed, a tiny photosynthetic organism known as a "cyanobacterium," produces chemical compounds that exhibit promise as anti-inflammatory agents and in combatting bacterial infections. The ...

Chronic pain is relieved by cell transplantation in lab study

Chronic pain is relieved by cell transplantation in lab study
2012-05-28
Chronic pain, by definition, is difficult to manage, but a new study by UCSF scientists shows how a cell therapy might one day be used not only to quell some common types of persistent and difficult-to-treat pain, but also to cure the conditions that give rise to them. The researchers, working with mice, focused on treating chronic pain that arises from nerve injury -- so-called neuropathic pain. In their study, published in the March 24, 2012 issue of Neuron, the scientists transplanted immature embryonic nerve cells that arise in the brain during development and ...

Gourmet butterflies speed north

2012-05-28
A new study led by scientists in the Department of Biology at the University of York has shown how a butterfly has changed its diet, and consequently has sped northwards in response to climate change. Their study is published in the latest issue of Science. The researchers found that warmer summers have allowed the Brown Argus butterfly to complete its life cycle by eating wild Geranium plants. Because the Geraniums are widespread in the British countryside, this change in diet has allowed the butterfly to expand its range in Britain at a surprisingly rapid rate. Over ...

The cells' petrol pump is finally identified

2012-05-28
Our cells breathe and digest, as does the organism as a whole. They indeed use oxygen to draw the energy contained in the nutrients they ingest, before discarding the waste, as carbon dioxide and water. Glucose is a preferred nutrient for the cells. Its digestion occurs in the cytoplasm, in the absence of oxygen, and leads to the formation of pyruvate and a small amount of energy. Pyruvate is then carried into mitochondria, the cell's power plants, for a complete burning, thus providing a maximal energetic yield. A mediocre energetic yield in tumor cells 'As opposed ...

CWRU class earns Science magazine prize for innovation

2012-05-28
Science magazine has awarded a prize for Inquiry-Based Instruction to a Case Western Reserve University class that melds biology, computer modeling, mathematical analysis and writing. "Dynamics of Biological Systems," taught by Biology Professor Hillel Chiel and three graduate assistants, abandons traditional lectures altogether in favor of learning by doing. The teachers call the class an example of the use of the continual improvement model in education. In it, Chiel pairs biology majors with engineering, physics or math majors, and has them concentrate on building ...

LAST 30 PRESS RELEASES:

ASU researchers to lead AAAS panel on water insecurity in the United States

ASU professor Anne Stone to present at AAAS Conference in Phoenix on ancient origins of modern disease

Proposals for exploring viruses and skin as the next experimental quantum frontiers share US$30,000 science award

ASU researchers showcase scalable tech solutions for older adults living alone with cognitive decline at AAAS 2026

Scientists identify smooth regional trends in fruit fly survival strategies

Antipathy toward snakes? Your parents likely talked you into that at an early age

Sylvester Cancer Tip Sheet for Feb. 2026

Online exposure to medical misinformation concentrated among older adults

Telehealth improves access to genetic services for adult survivors of childhood cancers

Outdated mortality benchmarks risk missing early signs of famine and delay recognizing mass starvation

Newly discovered bacterium converts carbon dioxide into chemicals using electricity

Flipping and reversing mini-proteins could improve disease treatment

Scientists reveal major hidden source of atmospheric nitrogen pollution in fragile lake basin

Biochar emerges as a powerful tool for soil carbon neutrality and climate mitigation

Tiny cell messengers show big promise for safer protein and gene delivery

AMS releases statement regarding the decision to rescind EPA’s 2009 Endangerment Finding

Parents’ alcohol and drug use influences their children’s consumption, research shows

Modular assembly of chiral nitrogen-bridged rings achieved by palladium-catalyzed diastereoselective and enantioselective cascade cyclization reactions

Promoting civic engagement

AMS Science Preview: Hurricane slowdown, school snow days

Deforestation in the Amazon raises the surface temperature by 3 °C during the dry season

Model more accurately maps the impact of frost on corn crops

How did humans develop sharp vision? Lab-grown retinas show likely answer

Sour grapes? Taste, experience of sour foods depends on individual consumer

At AAAS, professor Krystal Tsosie argues the future of science must be Indigenous-led

From the lab to the living room: Decoding Parkinson’s patients movements in the real world

Research advances in porous materials, as highlighted in the 2025 Nobel Prize in Chemistry

Sally C. Morton, executive vice president of ASU Knowledge Enterprise, presents a bold and practical framework for moving research from discovery to real-world impact

Biochemical parameters in patients with diabetic nephropathy versus individuals with diabetes alone, non-diabetic nephropathy, and healthy controls

Muscular strength and mortality in women ages 63 to 99

[Press-News.org] Locating ground zero
How the brain's emergency workers find the disaster area