PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Putting parasites on the world map

Methods developed to enable large-scale analysis of malaria parasite genomes from patient blood samples

2012-06-14
(Press-News.org) Researchers have developed a new technique to identify hotspots of malaria parasite evolution and track the rise of malarial drug resistance, faster and more efficiently than ever before.

For the first time, researchers have the ability to analyse malaria genomes straight from patient blood samples using new sequencing technologies and informatics methods. As a proof of principle, the team conducted the first analysis of clinical samples from six countries and uncovered unique differences in malaria development in Africa, Asia and Oceania. This study is published in Nature on the 13 June 2012.

Severe forms of malaria infection are caused by the parasite Plasmodium falciparum, which is spread by mosquitoes. Malaria infects over 200 million people and kills approximately 600,000 people every year, primarily children under the age of five in sub-Saharan Africa.

"One of the most striking features of P. falciparum is its ability to evolve, and overcome anti-malarial drugs. Chloroquine has become ineffective against malaria, and resistance to the other frontline drugs is emerging," says senior author of the study Professor Dominic Kwiatkowski, of the Wellcome Trust Sanger Institute and Oxford University. "If we want to control resistance, we first need to be able to monitor the genetic diversity of P. falciparum and identify hotspots of potential resistance as they occur. Rapid sequencing of parasite genomes from the blood of infected people is a powerful way of detecting changes in the parasite population, and potentially an important new surveillance tool in the armamentarium for controlling malaria."

The team developed a new technique to extract the parasite DNA directly from blood removing as much human DNA from the sample as possible. The new method overcomes the need to grow the parasite in a blood culture before sequencing, speeding the process and minimising replication errors.

P. falciparum genomes are particularly difficult to sequence because, unlike human DNA, large parts of the DNA sequence are repeated. As a result, the reconstruction of whole parasite genome DNA sequences is slow, expensive and error-prone using current DNA sequencing methods. To avoid these problems, the team used sequence data to create a list of single DNA letter changes, known as SNPs, which can be reliably identified in the gene-rich areas of the genome. These SNPs allow the discovery and measurement of variability in natural parasite populations.

"We catalogued approximately 86,000 SNPs in the parasite genome that allow us to pinpoint differences between parasites around the world, a starting point for understanding how these populations adapt to changes in their environment." says Dr Magnus Manske, co-first author from the Sanger Institute.

Dr Olivo Miotto from the Sanger Institute and Oxford University, also a co-first author, adds: "Many malaria patients, especially in Africa, are continually infected by malaria parasites, and we have created a new tool for studying the genetic diversity within a single patient, and compare it to the diversity in their environment."

The team used these techniques to analyse samples from Burkina Faso, Cambodia, Kenya, Mali, Papua New Guinea and Thailand. They found that a single infected person could harbour many genetically different malarial parasites, allowing the parasite populations to swap DNA to create new forms. Hence, the pace of parasite evolution is drastically affected by human factors, as well as geography.

Samples taken from people in the neighbouring African countries of Burkina Faso and Mali, where there are very high levels of malaria transmission, showed strong intermingling of P. falciparum genomes.

In stark contrast, Asian P. falciparum parasites collected on the Thai-Burmese border were not only different from those in Africa, but also distinct from those found near the Thai border with Cambodia. This lack of intermingling could be the result of effective malaria control in Thailand, combined with a history of restricted travel of people between Thailand and Cambodia.

"The emergence and spread of anti-malarial drug resistance is a major threat to current global initiatives to control and eliminate malaria" says Professor Nick White of Oxford University and Mahidol University, Thailand. "This research provides fundamental insights into the population structure and evolution of Plasmodium falciparum that are essential if we are to identify, map, and then contain spreading resistance. Working as a global community, we can now build on this technique to identify hotspots of antimalarial drug resistance around the world and contain them effectively."

###

Notes to Editors

Publication Details

Magnus Manske, Olivo Miotto et al (2012) Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing. Nature
DOI: 10.1038/nature11174

Funding

This research was funded by the Wellcome Trust, the Medical Research Council, Howard Hughes Medical Institute.

Participating Centres

A full list of participating centres can be found on the paper

Selected Websites

The Wellcome Trust Sanger Institute is one of the world's leading genome centres. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower medical science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease. http://www.sanger.ac.uk

The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. We support the brightest minds in biomedical research and the medical humanities. Our breadth of support includes public engagement, education and the application of research to improve health. We are independent of both political and commercial interests. http://www.wellcome.ac.uk

Oxford University's Medical Sciences Division is one of the largest biomedical research centres in Europe, with over 2,500 people involved in research and more than 2,800 students. The University is rated the best in the world for medicine, and it is home to the UK's top-ranked medical school.

From the genetic and molecular basis of disease to the latest advances in neuroscience, Oxford is at the forefront of medical research. It has one of the largest clinical trial portfolios in the UK and great expertise in taking discoveries from the lab into the clinic. Partnerships with the local NHS Trusts enable patients to benefit from close links between medical research and healthcare delivery.

A great strength of Oxford medicine is its long-standing network of clinical research units in Asia and Africa, enabling world-leading research on the most pressing global health challenges such as malaria, TB, HIV/AIDS and flu. Oxford is also renowned for its large-scale studies which examine the role of factors such as smoking, alcohol and diet on cancer, heart disease and other conditions.

For almost 100 years the Medical Research Council has improved the health of people in the UK and around the world by supporting the highest quality science. The MRC invests in world-class scientists. It has produced 29 Nobel Prize winners and sustains a flourishing environment for internationally recognised research. The MRC focuses on making an impact and provides the financial muscle and scientific expertise behind medical breakthroughs, including one of the first antibiotics penicillin, the structure of DNA and the lethal link between smoking and cancer. Today MRC funded scientists tackle research into the major health challenges of the 21st century. www.mrc.ac.uk

Contact details

Don Powell Media Manager
Wellcome Trust Sanger Institute
Hinxton, Cambridge, CB10 1SA, UK
Tel +44 (0)1223 496 928
Mobile +44 (0)7753 7753 97
Email press.office@sanger.ac.uk

END



ELSE PRESS RELEASES FROM THIS DATE:

Planets can form around different types of stars

Planets can form around different types of stars
2012-06-14
VIDEO: Astrophysicist Lars Buchhave, University of Copenhagen explains about his new research showing, that planets up to four times the size of the Earth can form around very different stars... Click here for more information. It had previously been thought that planets were more likely to form around a star if the star had a high content of heavier elements. But new research from the University of Copenhagen, among others, shows that small planets can form around very ...

'Extremely little' telescope discovers pair of odd planets

2012-06-14
ANCHORAGE, Alaska - Even small telescopes can make big discoveries. Though the KELT North telescope in southern Arizona carries a lens no more powerful than a high-end digital camera, it's just revealed the existence of two very unusual faraway planets. One planet is a massive, puffed-up oddity that could change ideas of how solar systems evolve. The other orbits a very bright star, and will allow astronomers to make detailed measurements of the atmospheres of these bizarre worlds. Ohio State University doctoral student Thomas Beatty and Vanderbilt University research ...

Caregiver's health is strong predictor of orphan's health

2012-06-14
DURHAM, N.C. -- The health of a caregiver is the most important predictor of orphan health, according to a new Duke University study that spans five less-wealthy nations in Africa and Asia. More important than an orphan's geographic location, living conditions or past trauma, the Duke study finds that an unhealthy caregiver likely means an unhealthy child. The findings prompt Duke researchers to call for international orphan policies to place greater attention on assessing and treating an orphan and his caregiver's health together, rather than focusing solely on children's ...

NIH Human Microbiome Project defines normal bacterial makeup of the body

2012-06-14
Microbes inhabit just about every part of the human body, living on the skin, in the gut, and up the nose. Sometimes they cause sickness, but most of the time, microorganisms live in harmony with their human hosts, providing vital functions essential for human survival. For the first time, a consortium of researchers organized by the National Institutes of Health has mapped the normal microbial make-up of healthy humans, producing numerous insights and even a few surprises. Researchers found, for example, that nearly everyone routinely carries pathogens, microorganisms ...

Researchers find new cause of cardiac damage after heart attack in type 1 diabetes

Researchers find new cause of cardiac damage after heart attack in type 1 diabetes
2012-06-14
Boston – June 13, 2012 -- After people with type 1 diabetes have a heart attack, their long-term chance of suffering even more heart damage skyrockets. But the reason has long puzzled scientists. Now researchers at Joslin Diabetes Center have identified the misstep that sparks this runaway chronic damage and a promising way to block it. "The problem arises from autoimmunity, a condition that people with type 1 diabetes already have ," says Myra A. Lipes, M.D, investigator in the Section on Immunology at Joslin and principal investigator of a study published in the June ...

Juveniles build up physical -- but not mental -- tolerance for alcohol in Baylor study

2012-06-14
Research into alcohol's effect on juvenile rats shows they have an ability to build up a physical, but not cognitive, tolerance over the short term — a finding that could have implications for adolescent humans, according to Baylor University psychologists. The research findings are significant because they indicate that blood alcohol concentration levels alone may not fully account for impaired orientation and navigation ability, said Jim Diaz-Granados, Ph.D., professor and chair of psychology and neuroscience at Baylor. He co-authored the study, published in the journal ...

Forsyth scientists define the bacteria that live in the mouth, throat and gut

2012-06-14
For the first time, scientists have defined the bacteria that inhabit multiple sites along the healthy human digestive tract in a large number of individuals. To prevent and control bacterial diseases, it is essential to first identify which bacteria are responsible for keeping us in good health. As part of the Human Microbiome Project, the Forsyth Institute-led team examined bacteria found in adults at 10 sites along the digestive tract, including seven mouth surfaces, the tonsils, the throat and stool samples. This work lays an important foundation for future research ...

Human Microbiome Project outlines powerful new methods for cataloging and analyzing microbes

2012-06-14
Boston, MA -- New studies led by Harvard School of Public Health (HSPH) researchers have helped identify and analyze the vast human "microbiome"—the more than five million microbial genes that exist inside the human body. Scientists estimate that each person carries about 100 times as many microbial genes as human genes, and they want to learn more about the role that microbes—organisms like bacteria, viruses, and fungi that live in the stomach, in the mouth, on the skin, or elsewhere—play in normal bodily functions, like development or immunity, as well as in disease. Several ...

Mapping the healthy human microbiome

2012-06-14
Human beings are ecosystems on two legs, each of us carrying enough microbes to outnumber our human cells by 10 to 1 and our genes by even more. Identifying the dizzying numbers of bacteria and other microbes that live in and on our bodies is like exploring a new planet. You need much more than telescopes and charts to map the unknown territory called our microbiomes – and explorers to take a census of the inhabitants. The Human Microbiome Project (HMP) Consortium, a five-year collaboration of large sequencing centers including the Broad Institute and dozens of other ...

Human Microbiome Project finds vast individuality in healthy human bacterial populations

2012-06-14
When researchers at NIH and Celera published the first complete draft sequences of the human genome in 2001, many people assumed that the genetic foundation for a new and complete understanding of the human body and its functions had been achieved. As it turned out this was far from the complete story, since it turns out that our bodies are, well… not completely human. In the culmination of a multi-year effort directed by NIH, the Human Microbiome Project (HMP) has announced first genomic compilation of the generalized biome of microbes in the human body that complement ...

LAST 30 PRESS RELEASES:

Motion capture: In world 1st, M. mobile’s motility apparatus clarified

One-third of older Canadians at nutritional risk, study finds

Enhancing climate action: satellite insights into fossil fuel CO2 emissions

Operating a virtual teaching and research section as an open source community: Practice and experience

Lack of medical oxygen affects millions

Business School celebrates triple crown

Can Rhizobium + low P increase the yield of common bean in Ethiopia?

Research Security Symposium on March 12

Special type of fat tissue could promote healthful longevity and help maintain exercise capacity in aging

Researchers develop high-water-soluble pyrene tetraone derivative to boost energy density of aqueous organic flow batteries

Who gets the lion’s share? HKU ecologists highlight disparities in global biodiversity conservation funding

HKU researchers unveil neuromorphic exposure control system to improve machine vision in extreme lighting environments

Researchers develop highly robust, reconfigurable, and mechanochromic cellulose photonic hydrogels

Researchers develop new in-cell ultraviolet photodissociation top-down mass spectrometry method

Researchers develop innovative tool for rapid pathogen detection

New insights into how cancer evades the immune system

3 Ways to reduce child sexual abuse rates

A third of children worldwide forecast to be obese or overweight by 2050

Contraction inhibitors after 30 weeks have no effect on baby's health

Nearly 1 in 5 US college athletes reports abusive supervision by their coaches

THE LANCET: More than half of adults and a third of children and adolescents predicted to have overweight or obesity by 2050

Ideal nitrogen fertilizer rates in Corn Belt have been climbing for decades, Iowa State study shows

Survey suggests people with disabilities may feel disrespected by health care providers

U-Michigan, UC Riverside launch alliance to promote hydrogen-fueled internal combustion engines

New insights into network power response: Unveiling multi-timescale characteristics

Simple algorithm helps improve treatment, reduce disparities in MS

Despite high employment rates, Black immigrants in the United States more likely to be uninsured, USC study shows

Research supports move toward better tailoring stroke rehabilitation

Imagining future events changes brain to improve healthy decision-making, new study indicates

Turning plastic waste into valuable resources: A new photocatalytic approach

[Press-News.org] Putting parasites on the world map
Methods developed to enable large-scale analysis of malaria parasite genomes from patient blood samples