(Press-News.org) A team of researchers led by UC Davis Health System has found that human alpha-defensin 6 (HD6) – a key component of the body's innate defense system – binds to microbial surfaces and forms "nanonets" that surround, entangle and disable microbes, preventing bacteria from attaching to or invading intestinal cells.
The research describes an entirely new mechanism of action for defensins, an important group of molecules known to bolster the defenses of circulating white blood cells, protect cellular borders from invasive pathogens and regulate which "friendly" microbes can colonize body surfaces. The discovery provides important clues to inflammatory bowel diseases, especially Crohn's disease, which may be caused, in part, by deficiencies in HD6 levels or function.
A paper describing the work appears in the June 22 issue of the journal Science.
"During the past 25 years, researchers have learned a lot about the biological function of defensins, but the role of HD6, a particular molecule that is highly expressed in the intestines, was a mystery," said Charles L. Bevins, professor of microbiology and immunology at UC Davis. "We now know that HD6 has a very unique role in the body's innate immune system. Its ability to latch onto microbial surfaces and self-assemble to cast a fibrous net around bacteria, including pathogens like Salmonella and Yersinia, as well as fungi and protozoan parasites, gives the intestine, a critical part of the body, a powerful and broad spectrum of defense against potential threats."
Bevins is co-senior author of the paper along with his UC Davis colleague Professor Andreas Bäumler, an expert in bacterial pathogenesis; UCLA Emeritus Professor Robert I. Lehrer, whose laboratory was the first to discover defensins in the early 1980s; and Professor Wuyuan Lu, a synthetic protein chemist from the University of Maryland School of Medicine whose work provided clues to HD6's subtle and unique properties. First author Hiutung Chu, a graduate student in the Bevins lab who is now a fellow at the California Institute of Technology, was a driving force on the nine-year quest to solve the HD6 puzzle.
About the protein HD6
Defensins are a family of structurally related, small peptides with antibiotic activity found throughout nature in plants and animals. Humans make six different alpha-defensins. Two of these, HD5 and HD6, are secreted by Paneth cells, specialized secretory cells located within the folds of the small intestinal lining. HD5 has well-known antibacterial properties while the function of HD6 had been unknown. The defensin-rich secretions of Paneth cells work in conjunction with nearby intestinal stem cells to maintain micro flora balance and renew intestinal cellular surfaces.
Chu's graduate work focused on characterizing the biological activity of HD6 in studies using cultured intestinal epithelial cells and transgenic mouse models. Although Chu and Bevins anticipated HD6 activity would be very similar to other alpha-defensins, which kill pathogens by poking holes in the microbial membrane, their early research studies repeatedly showed that HD6 did not kill bacteria. Puzzled, they then looked for other possible functions, collaborating with UC Davis professors Angela Gelli and Scott Dawson to see if HD6 might kill only certain bacteria, fungi or parasites. It did not.
After two years into the project and feeling frustrated about the negative results, Bevins and Chu carefully reviewed the experimental data. That's when they recognized two crucial pieces of information. The first was that whenever HD6 was added to suspensions of either bacteria or fungi, a white haze, or precipitate, formed in the solution (see image below). The second was that early studies conducted in collaboration with Bäumler had shown that while HD6 did not kill the bacterial pathogen Salmonella, it protected transgenic mice from an otherwise lethal infection.
"When we put these two results together, we were able to systematically show that HD6 was inhibiting microbial invasion and uncover HD6's unique structure and function at multiple levels," said Bevins.
On the road to discovery
The UC Davis team then collaborated with Lehrer, whose research focuses on the study of defensins and other antimicrobial peptides that serve as natural antibiotics. In his laboratory, he had a surface plasmon resonance instrument that measured molecular binding in real time. This technique captured the progressive assembly of HD6 molecules, from binding to bacterial proteins at the microbial cell surface to the self-assembly to form fibrils and the sequential addition of fibrils (see images below).
Through the expertise of Lu, a synthetic protein chemist and expert in defensin structure and function relationships, the team obtained sufficient quantities of the highest-grade HD6 peptide and subtle molecular variants of HD6 to test their hypotheses experimentally. Lu was able to identify critical structural components of HD6 that enabled it to self-assemble into fibrils. One feature unique to HD6 is the manner in which four HD6 molecules combine to form a building block whose further assembly creates both fibers and nets. The researchers also found that changing just one of the 32 amino-acid residues of the HD6 molecule -- histidine-27 -- impaired HD6's ability to form a tetramer in the x-ray crystal structure. As a result, HD6 lost the special binding that Lehrer found in his real-time experiments, blocked the ability of HD6 to form nanonets and abrogated its ability to inhibit bacterial invasion.
The Bäumler laboratory created vital bacterial mutants affecting the molecules that HD6 initially binds to on the surface of the microbe. When those molecules were knocked out in the transgenic mouse model, HD6 did not form the fibrils on the bacterial surface.
"This series of experiments provided the vital 'glue' to bind the many facets of the story together, and to convince ourselves and our peers that we had finally solved the mechanism of HD6 action," commented Bevins.
Clues to innate immunity and inflammatory bowel diseases
The UC Davis research describes how HD6 contributes to the body's innate immunity, which protects from microbes that the immune system might not have any experience in managing.
"The innate immune system has to be able to deal with diverse microbes that might have all kinds of tricks that cause infection," said Bevins. "After we've been exposed to a microbe or an infection the first time and survive it, the adaptive immune system can recognize and remember specific pathogens to generate immunity and to mount stronger defenses each time the pathogen is encountered. HD6 is a major player in helping the body prevent potentially dangerous pathogens from coming into close physical contact with intestinal epithelial cells of the intestine, as well as the stem cells that continuously renew the epithelial cell surface."
Previously published studies from the Bevins lab have linked alpha-defensins and Crohn's disease, a chronic inflammatory bowel disease that investigators associated with HD5 and HD6 deficiencies. The secretions of these defensins typically occur at the base of the out pouches (so-called crypts) of the small intestinal surface, where they are ready to fend off bacteria that become dangerously close to the intestinal lining. Individuals with Crohn's disease, however, tend to accumulate invasive bacteria in this same area, developing a chronic inflammation that is self-perpetuating.
"With less of these important defense molecules, microbes that would normally exist in the gut, can irritate the intestinal surface and cause the chronic inflammation that characterizes Crohn's disease," said Bevins. "We know a lot about HD5's antimicrobial activities, so it makes sense why reduced HD5 levels might contribute or allow this condition to progress. Now we have a clue how HD6 levels play a role."
Future studies on Crohn's disease by this team aim to better understand exactly why alpha–defensin-expression is reduced in individuals with Crohn's disease, and perhaps devise strategies to boost the body's production of these vital molecules.
"The multidisciplinary approach that we used to 'crack' the obscure and complex action of HD6 exemplifies the power of team science," Bevins said. "Not to be underestimated, however, is the courage and tenaciousness of graduate student Hiutung Chu in leading the experimental investigations. Many blind alleys were visited as we investigated this molecule, and those frustrating diversions can erode confidence and morale. Hiutung deserves tremendous credit for persevering through those setbacks."
###Other authors on the paper include Marzena Pazgier from the University of Maryland School of Medicine, Grace Jung from the David Geffen School of Medicine at UCLA, Bo Shen at the Cleveland Clinic Foundation, Nita H. Salzman at the Medical College of Wisconsin and Mark A. Underwood, Glenn M.Young, Sean-Paul Nuccio, Patricia A. Castillo, Maarten F. deJong, Maria G. Winter, Sebastian E. Winter and Jan Wehkamp, all from the University of California, Davis.
This research was supported by grants from the National Institutes of Health.
Immune system molecule weaves cobweb-like nanonets to snag Salmonella, other intestinal microbes
Discovery provides clues to deficiencies in inflammatory bowel disease, Crohn's disease
2012-06-22
ELSE PRESS RELEASES FROM THIS DATE:
Our microbes, ourselves
2012-06-22
Gut bacteria's key role in immunity is tuned to the host species, researchers have found, suggesting that the superabundant microbes lining our digestive tract evolved with us—a tantalizing clue in the mysterious recent spike in human autoimmune disorders.
A new study reports that the superabundance of microbial life lining our GI tracts has coevolved with us. These internal bacteria, which are essential for a healthy immune system, are ultimately our evolutionary partners. In other words, humans may have coevolved with gut bacteria unique to humans, which are not immunologically ...
Parents seen as critical stakeholders in expanding newborn screening
2012-06-22
Parents must be considered when states decide to expand genetic screening programs for newborns, according to a new study that looked at mandatory testing panels and political pressure by advocacy groups.
Nearly all infants in the United States undergo a heel prick within days of birth for a simple blood test to detect rare genetic disorders. For decades, state-based mandatory newborn screening programs have focused on disorders such as phenylketonuria (PKU) or hypothyroidism in which a prompt diagnosis and treatment could prevent disability or even death.
In recent ...
Penn researchers' study of phase change materials could lead to better computer memory
2012-06-22
PHILADELPHIA -- Memory devices for computers require a large collection of components that can switch between two states, which represent the 1's and 0's of binary language. Engineers hope to make next-generation chips with materials that distinguish between these states by physically rearranging their atoms into different phases. Researchers at the University of Pennsylvania have now provided new insight into how this phase change happens, which could help engineers make memory storage devices faster and more efficient.
The research was conducted by Ritesh Agarwal, associate ...
Researchers tune the strain in graphene drumheads to create quantum dots
2012-06-22
Tightening or relaxing the tension on a drumhead will change the way the drum sounds. The same goes for drumheads made from graphene, only instead of changing the sound, stretching graphene has a profound effect on the material's electrical properties. Researchers working at the National Institute of Standards and Technology (NIST) and the University of Maryland have shown that subjecting graphene to mechanical strain can mimic the effects of magnetic fields and create a quantum dot, an exotic type of semiconductor with a wide range of potential uses in electronic devices.
The ...
Genomics and African queens
2012-06-22
Researchers have started to unveil the genetic heritage of Ethiopian populations, who are among the most diverse in the world, and lie at the gateway from Africa. They found that the genomes of some Ethiopian populations bear striking similarities to those of populations in Israel and Syria, a potential genetic legacy of the Queen of Sheba and her companions.
The team detected mixing between some Ethiopians and non-African populations dating to approximately 3,000 years ago. The origin and date of this genomic admixture, along with previous linguistic studies, is consistent ...
Enzyme offers new therapeutic target for cancer drugs
2012-06-22
Researchers at the University of California, San Diego School of Medicine have uncovered a new signal transduction pathway specifically devoted to the regulation of alternative RNA splicing, a process that allows a single gene to produce or code multiple types of protein variants. The discovery, published in the June 27, 2012 issue of Molecular Cell, suggests the new pathway might be a fruitful target for new cancer drugs.
Signal transduction in the cell involves kinases and phosphatases, enzymes that transfer or remove phosphates in protein molecules in a cascade or ...
McGill researchers discover the cause of an inherited form of epilepsy
2012-06-22
Researchers at McGill University have discovered the cause of an inherited form of epilepsy. The disease, known as double-cortex syndrome, primarily affects females and arises from mutations on a gene located on the X chromosome. Drs. Susanne Bechstedt and Gary Brouhard of the Department of Biology have used a highly advanced microscope to discover how these mutations cause a malformation of the human brain. The results of their study are published in the journal Developmental Cell.
When the brain develops in the uterus, new brain cells are born deep within the brain, ...
Climate drilling in the Arctic Circle
2012-06-22
During the past 2.8 million years extreme warm periods occurred in the Arctic at irregular intervals. Analytical results from the longest sediment core that has ever been drilled in the terrestrial areas of the Arctic have shown temperatures that were previously considered impossible for the Arctic Circle. In addition, a notable correlation of the warm periods in the Arctic with large melting events in Antarctica points to previously unknown interactions between the Polar Regions. These are the findings of an international research team led by Professor Martin Melles of ...
New deglaciation data opens door for earlier First Americans migration
2012-06-22
CORVALLIS, Ore. - A new study of lake sediment cores from Sanak Island in the western Gulf of Alaska suggests that deglaciation there from the last Ice Age took place as much as1,500 to 2,000 years earlier than previously thought, opening the door for earlier coastal migration models for the Americas.
The Sanak Island Biocomplexity Project, funded by the National Science Foundation, also concluded that the maximum thickness of the ice sheet in the Sanak Island region during the last glacial maximum was 70 meters – or about half that previously projected – suggesting ...
Stanford-led study explains how stress can boost immune system
2012-06-22
STANFORD, Calif. — A study spearheaded by a Stanford University School of Medicine scientist has tracked the trajectories of key immune cells in response to short-term stress and traced, in great detail, how hormones triggered by such stress enhance immune readiness. The study, conducted in rats, adds weight to evidence that immune responsiveness is heightened, rather than suppressed as many believe, by the so-called "fight-or-flight" response.
The study's findings provide a thorough overview of how a triad of stress hormones affects the main cell subpopulations of the ...
LAST 30 PRESS RELEASES:
COVID-19 pandemic drove significant rise in patients choosing to leave ERs before medically recommended
Burn grasslands to maintain them: What is good for biodiversity?
Ventilation in hospitals could cause viruses to spread further
New study finds high concentrations of plastics in the placentae of infants born prematurely
New robotic surgical systems revolutionizing patient care
New MSK research a step toward off-the-shelf CAR T cell therapy for cancer
UTEP professor wins prestigious research award from American Psychological Association
New national study finds homicide and suicide is the #1 cause of maternal death in the U.S.
Women’s pelvic tissue tears during childbirth unstudied, until now
Earth scientists study Sikkim flood in India to help others prepare for similar disasters
Leveraging data to improve health equity and care
Why you shouldn’t scratch an itchy rash: New study explains
Linking citation and retraction data aids in responsible research evaluation
Antibody treatment prevents severe bird flu in monkeys
Polar bear energetic model reveals drivers of polar bear population decline
Socioeconomic and political stability bolstered wild tiger recovery in India
Scratching an itch promotes antibacterial inflammation
Drivers, causes and impacts of the 2023 Sikkim flood in India
Most engineered human cells created for studying disease
Polar bear population decline the direct result of extended ‘energy deficit’ due to lack of food
Lifecycle Journal launches: A new vision for scholarly publishing
Ancient DNA analyses bring to life the 11,000-year intertwined genomic history of sheep and humans
Climate change increases risk of successive natural hazards in the Himalayas
From bowling balls to hip joints: Chemists create recyclable alternative to durable plastics
Promoting cacao production without sacrificing biodiversity
New £2 million project to save UK from food shortages
SCAI mourns Frank J. Hildner, MD, FSCAI: A founder and leader
New diagnostic tool will help LIGO hunt gravitational waves
Social entrepreneurs honored for lifesaving innovations
Aspects of marriage counseling may hold the key to depolarizing, unifying the country, study finds
[Press-News.org] Immune system molecule weaves cobweb-like nanonets to snag Salmonella, other intestinal microbesDiscovery provides clues to deficiencies in inflammatory bowel disease, Crohn's disease