(Press-News.org) Dark galaxies are small, gas-rich galaxies in the early Universe that are very inefficient at forming stars. They are predicted by theories of galaxy formation and are thought to be the building blocks of today's bright, star-filled galaxies. Astronomers think that they may have fed large galaxies with much of the gas that later formed into the stars that exist today.
Because they are essentially devoid of stars, these dark galaxies don't emit much light, making them very hard to detect. For years astronomers have been trying to develop new techniques that could confirm the existence of these galaxies. Small absorption dips in the spectra of background sources of light have hinted at their existence. However, this new study marks the first time that such objects have been seen directly.
"Our approach to the problem of detecting a dark galaxy was simply to shine a bright light on it." explains Simon Lilly (ETH Zurich, Switzerland), co-author of the paper. "We searched for the fluorescent glow of the gas in dark galaxies when they are illuminated by the ultraviolet light from a nearby and very bright quasar. The light from the quasar makes the dark galaxies light up in a process similar to how white clothes are illuminated by ultraviolet lamps in a night club." [1]
The team took advantage of the large collecting area and sensitivity of the Very Large Telescope (VLT), and a series of very long exposures, to detect the extremely faint fluorescent glow of the dark galaxies. They used the FORS2 instrument to map a region of the sky around the bright quasar [2] HE 0109-3518, looking for the ultraviolet light that is emitted by hydrogen gas when it is subjected to intense radiation. Because of the expansion of the Universe, this light is actually observed as a shade of violet by the time it reaches the VLT. [3]
"After several years of attempts to detect fluorescent emission from dark galaxies, our results demonstrate the potential of our method to discover and study these fascinating and previously invisible objects," says Sebastiano Cantalupo (University of California, Santa Cruz), lead author of the study.
The team detected almost 100 gaseous objects which lie within a few million light-years of the quasar. After a careful analysis designed to exclude objects where the emission might be powered by internal star-formation in the galaxies, rather than the light from the quasar, they finally narrowed down their search to 12 objects. These are the most convincing identifications of dark galaxies in the early Universe to date.
The astronomers were also able to determine some of the properties of the dark galaxies. They estimate that the mass of the gas in them is about 1 billion times that of the Sun, typical for gas-rich, low-mass galaxies in the early Universe. They were also able to estimate that the star formation efficiency is suppressed by a factor of more than 100 relative to typical star-forming galaxies found at similar stage in cosmic history. [4]
"Our observations with the VLT have provided evidence for the existence of compact and isolated dark clouds. With this study, we've made a crucial step towards revealing and understanding the obscure early stages of galaxy formation and how galaxies acquired their gas", concludes Sebastiano Cantalupo.
The MUSE integral field spectrograph, which will be commissioned on the VLT in 2013, will be an extremely powerful tool for the study of these objects.
INFORMATION:
Notes
[1] Fluorescence is the emission of light by a substance illuminated by a light source. In most cases, the emitted light has longer wavelength than the source light. For instance, fluorescent lamps transform ultraviolet radiation -- invisible to us -- into optical light. Fluorescence appears naturally in some compounds, such as rocks or minerals but can be also added intentionally as in detergents that contain fluorescent chemicals to make white clothes appear brighter under normal light.
[2] Quasars are very bright, distant galaxies that are believed to be powered by supermassive black holes at their centres. Their brightness makes them powerful beacons that can help to illuminate the surrounding area, probing the era when the first stars and galaxies were forming out of primordial gas.
[3] This emission from hydrogen is known as Lyman-alpha radiation, and is produced when electrons in hydrogen atoms drop from the second-lowest to the lowest energy level. It is a type of ultraviolet light. Because the Universe is expanding, the wavelength of light from objects gets stretched as it passes through space. The further light has to travel, the more its wavelength is stretched. As red is the longest wavelength visible to our eyes, this process is literally a shift in wavelength towards the red end of the spectrum -- hence the name 'redshift'. The quasar HE 0109-3518 is located at a redshift of z = 2.4, and the ultraviolet light from the dark galaxies is shifted into the visible spectrum. A narrow-band filter was specially designed to isolate the specific wavelength of light that the fluorescent emission is redshifted to. The filter was centered at around 414.5 nanometres in order to capture Lyman-alpha emission redshifted by z=2.4 (this corresponds to a shade of violet) and has a bandpass of only 4 nanometres.
[4] The star formation efficiency is the mass of newly formed stars over the mass of gas available to form stars. They found these objects would need more than 100 billion years to convert their gas into stars. This result is in accordance with recent theoretical studies that have suggested that gas-rich low-mass haloes at high redshift may have very low star formation efficiency as a consequence of lower metal content.
More information
This research was presented in a paper entitled "Detection of dark galaxies and circum-galactic filaments fluorescently illuminated by a quasar at z=2.4", by Cantalupo et al. to appear in Monthly Notices of the Royal Astronomical Society.
The team is composed of Sebastiano Cantalupo (University of California, Santa Cruz, USA), Simon J. Lilly (ETH Zurich, Switzerland) and Martin G. Haehnelt (Kavli Institute for Cosmology, Cambridge, United Kingdom).
The year 2012 marks the 50th anniversary of the founding of the European Southern Observatory (ESO). ESO is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world's largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 40-metre-class European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".
Links
Photos of the VLT: http://www.eso.org/public/images/archive/search/?adv=&subject_name=Very%20Large%20Telescope
Other images taken with the VLT: http://www.eso.org/public/images/archive/search/?adv=&facility=31
Contacts
Sebastiano Cantalupo
University of California
Santa Cruz, USA
Tel: +1 831 459 5891
Email: cantal@ucolick.org
Simon J. Lilly
Institute for Astronomy, ETH Zurich
Zurich, Switzerland
Tel: +41 44 633 3828
Email: simon.lilly@phys.ethz.ch
Richard Hook
ESO, La Silla, Paranal, E-ELT & Survey Telescopes Press Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email: rhook@eso.org
Dark galaxies of the early Universe spotted for the first time
2012-07-12
ELSE PRESS RELEASES FROM THIS DATE:
High-density lipoprotein still matters, look at the particles!
2012-07-12
Boston, MA—Until recently, it seemed well-established that high-density lipoprotein (HDL) is the "good cholesterol". However there are many unanswered questions on whether raising someone's HDL can prevent coronary heart disease, and on whether or not HDL still matters. A team of researchers at Brigham and Women's Hospital (BWH), the University of Pittsburgh Graduate School of Public Health (GSPH) and other institutions, have discovered that measuring HDL particles (HDL-P) as opposed to HDL cholesterol (HDL-C) is a much better indicator of coronary heart disease (CHD), ...
Smart materials get SMARTer
2012-07-12
Cambridge, Mass. – July 11, 2012 – Living organisms have developed sophisticated ways to maintain stability in a changing environment, withstanding fluctuations in temperature, pH, pressure, and the presence or absence of crucial molecules. The integration of similar features in artificial materials, however, has remained a challenge—until now.
In the July 12 issue of Nature, a Harvard-led team of engineers presented a strategy for building self-thermoregulating nanomaterials that can, in principle, be tailored to maintain a set pH, pressure, or just about any other desired ...
Researchers 1 step closer to new kind of thermoelectric 'heat engine'
2012-07-12
COLUMBUS, Ohio - Researchers who are studying a new magnetic effect that converts heat to electricity have discovered how to amplify it a thousand times over - a first step in making the technology more practical.
In the so-called spin Seebeck effect, the spin of electrons creates a current in magnetic materials, which is detected as a voltage in an adjacent metal. Ohio State University researchers have figured out how to create a similar effect in a non-magnetic semiconductor while producing more electrical power.
They've named the amplified effect the "giant spin-Seebeck" ...
Anxiety linked to shortened telomeres, accelerated aging
2012-07-12
BOSTON, MA—Is anxiety related to premature aging? A new study by researchers at Brigham and Women's Hospital (BWH) shows that a common form of anxiety, known as phobic anxiety, was associated with shorter telomeres in middle-aged and older women. The study suggests that phobic anxiety is a possible risk factor for accelerated aging.
The study will be electronically published on July 11, 2012 in PLoS ONE.
Telomeres are DNA-protein complexes at the ends of chromosomes. They protect chromosomes from deteriorating and guard the genetic information at the ends of chromosomes ...
Alzheimer's plaques in PET brain scans identify future cognitive decline
2012-07-12
DURHAM, N.C. – Among patients with mild or no cognitive impairment, brain scans using a new radioactive dye can detect early evidence of Alzheimer's disease that may predict future decline, according to a multi-center study led by researchers at Duke University Medical Center.
The finding is published online July 11, 2012, in the journal Neurology, the medical journal of the American Academy of Neurology. It expands on smaller studies demonstrating that early detection of tell-tale plaques could be a predictive tool to help guide care and treatment decisions for patients ...
Decline of immune system with aging may have a genetic cause
2012-07-12
BETHESDA, MD – July 11, 2012 -- Important insights that explain why our ability to ward off infection declines with age are published in a new research report in the July 2012 issue of the Genetics Society of America's journal, GENETICS (http://www.genetics.org/). A team of U.S. scientists identified genes responsible for this decline by examining fruit flies – a model organism often used to study human biology in an experimentally tractable system – at different stages of their lives. They found that a completely different set of genes is responsible for warding off infection ...
Stanford scientists identify potential target for treating major symptom of depression
2012-07-12
STANFORD, Calif. — Stanford University School of Medicine scientists have laid bare a novel molecular mechanism responsible for the most important symptom of major depression: anhedonia, the loss of the ability to experience pleasure. While their study was conducted in mice, the brain circuit involved in this newly elucidated pathway is largely identical between rodents and humans, upping the odds that the findings point toward new therapies for depression and other disorders.
Additionally, opinion leaders hailed the study's inventive methodology, saying it may offer ...
Genetics Society of America's Genetics journal highlights for July 2012
2012-07-12
Bethesda, MD—July 11, 2012 – Listed below are the selected highlights for the July 2012 issue of the Genetics Society of America's journal, Genetics. The July issue is available online at www.genetics.org/content/current. Please credit Genetics, Vol. 191, JULY 2012, Copyright © 2012.
ISSUE HIGHLIGHTS
Increasing association mapping power and resolution in mouse genetic studies through the use of meta-analysis for structured populations, pp. 959-967
Nicholas A. Furlotte, Eun Yong Kang, Atila Van Nas, Charles R. Farber, Aldons J. Lusis, and Eleazar Eskin
Because ...
TGen method isolates biospecimens for treatment of kidney disease
2012-07-12
PHOENIX, Ariz. — July 11, 2012 — Researchers at the Translational Genomics Research Institute (TGen) have developed a method of isolating biospecimens that could lead to a less costly, less invasive and more accurate way of diagnosing chronic kidney disease, or CKD.
CKD is a major complication of diabetes, high blood pressure and a form of kidney disease known as glomerulonephritis, which is characterized by a progressive deterioration of the kidney's ability to filter waste from the blood.
TGen's customized procedure produced high amounts of protein-rich urinary exosomes, ...
Trigger for past rapid sea level rise discovered
2012-07-12
The cause of rapid sea level rise in the past has been found by scientists at the University of Bristol using climate and ice sheet models.
The process, named 'saddle-collapse', was found to be the cause of two rapid sea level rise events: the Meltwater pulse 1a (MWP1a) around 14,600 years ago and the '8,200 year' event. The research is published today in Nature.
Using a climate model, Dr Lauren Gregoire of Bristol's School of Geographical Sciences and colleagues unearthed the series of events that led to saddle-collapse in which domes of ice over North America ...