(Press-News.org) Is sleep learning possible? A new Weizmann Institute study appearing today in Nature Neuroscience has found that if certain odors are presented after tones during sleep, people will start sniffing when they hear the tones alone – even when no odor is present – both during sleep and, later, when awake. In other words, people can learn new information while they sleep, and this can unconsciously modify their waking behavior.
Sleep-learning experiments are notoriously difficult to conduct. For one thing, one must be sure that the subjects are actually asleep and stay that way during the "lessons." The most rigorous trials of verbal sleep learning have failed to show any new knowledge taking root. While more and more research has demonstrated the importance of sleep for learning and memory consolidation, none had managed to show actual learning of new information taking place in an adult brain during sleep.
Prof. Noam Sobel and research student Anat Arzi, together with Sobel's group in the Institute's Neurobiology Department in collaboration with researchers from Loewenstein Hospital and the Academic College of Tel Aviv – Jaffa, chose to experiment with a type of conditioning that involves exposing subjects to a tone followed by an odor, so that they soon exhibit a similar response to the tone as they would to the odor. The pairing of tones and odors presented several advantages. Neither wakes the sleeper (in fact, certain odors can promote sound sleep), yet the brain processes them and even reacts during slumber. Moreover, the sense of smell holds a unique non-verbal measure that can be observed – namely sniffing. The researchers found that, in the case of smelling, the sleeping brain acts much as it does when awake: We inhale deeply when we smell a pleasant aroma but stop our inhalation short when assaulted by a bad smell. This variation in sniffing could be recorded whether the subjects were asleep or awake. Finally, this type of conditioning, while it may appear to be quite simple, is associated with some higher brain areas – including the hippocampus, which is involved in memory formation.
In the experiments, the subjects slept in a special lab while their sleep state was continuously monitored. (Waking up during the conditioning – even for a moment – disqualified the results.) As they slept, a tone was played, followed by an odor – either pleasant or unpleasant. Then another tone was played, followed by an odor at the opposite end of the pleasantness scale. Over the course of the night, the associations were partially reinforced, so that the subject was exposed to just the tones as well. The sleeping volunteers reacted to the tones alone as if the associated odor were still present – by either sniffing deeply or taking shallow breaths.
The next day, the now awake subjects again heard the tones alone – with no accompanying odor. Although they had no conscious recollection of listening to them during the night, their breathing patterns told a different story. When exposed to tones that had been paired with pleasant odors, they sniffed deeply, while the second tones – those associated with bad smells – provoked short, shallow sniffs.
The team then asked whether this type of learning is tied to a particular phase of sleep. In a second experiment, they divided the sleep cycles into rapid eye movement (REM) and non-REM sleep, and then induced the conditioning during only one phase or the other. Surprisingly, they found that the learned response was more pronounced during the REM phase, but the transfer of the association from sleep to waking was evident only when learning took place during the non-REM phase. Sobel and Arzi suggest that during REM sleep we may be more open to influence from the stimuli in our surroundings, but so-called "dream amnesia" – which makes us forget most of our dreams – may operate on any conditioning occurring in that stage of sleep. In contrast, non-REM sleep is the phase that is important for memory consolidation, so it might also play a role in this form of sleep-learning.
Although Sobel's lab studies the sense of smell, Arzi intends to continue investigating brain processing in altered states of consciousness such as sleep and coma. "Now that we know that some kind of sleep learning is possible," says Arzi, "we want to find where the limits lie – what information can be learned during sleep and what information cannot."
###Prof. Noam Sobel's research is supported by Regina Wachter, NY; the estate of Lore Lennon; the James S. McDonnell Foundation 21st Century Science Scholar in Understanding Human Cognition Program; the Minerva Foundation; and the European Research Council.
The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,700 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.
Weizmann Institute news releases are posted on the World Wide Web at http://wiswander.weizmann.ac.il/, and are also available at http://www.eurekalert.org/
A lesson in sleep learning
2012-08-27
ELSE PRESS RELEASES FROM THIS DATE:
Weighing molecules 1 at a time
2012-08-27
PASADENA, Calif.—A team led by scientists at the California Institute of Technology (Caltech) have made the first-ever mechanical device that can measure the mass of individual molecules one at a time.
This new technology, the researchers say, will eventually help doctors diagnose diseases, enable biologists to study viruses and probe the molecular machinery of cells, and even allow scientists to better measure nanoparticles and air pollution.
The team includes researchers from the Kavli Nanoscience Institute at Caltech and Commissariat à l'Energie Atomique et aux ...
Controlling gene expression: How chromatin remodelers block a histone pass
2012-08-27
KANSAS CITY, MO—Two opposing teams battle it out to regulate gene expression on the DNA playing field. One, the activators, keeps DNA open to enzymes that transcribe DNA into RNA. Their repressor opponents antagonize that effort by twisting DNA into an inaccessible coil around histone proteins, an amalgam called chromatin, effectively blocking access to DNA by enzymes that elongate an RNA strand.
Both teams maneuver by chemically modifying histones—the activators by decorating histones with acetyl groups—let's call them green flags—causing them to loosen their grip on ...
Compound discovered that boosts effect of vaccines against HIV and flu
2012-08-27
Oxford University scientists have discovered a compound that greatly boosts the effect of vaccines against viruses like flu, HIV and herpes in mice.
An 'adjuvant' is a substance added to a vaccine to enhance the immune response and offer better protection against infection.
The Oxford University team, along with Swedish and US colleagues, have shown that a type of polymer called polyethyleneimine (PEI) is a potent adjuvant for test vaccines against HIV, flu and herpes when given in mice.
The researchers were part-funded by the UK Medical Research Council and report ...
Merging the biological and the electronic
2012-08-27
Harvard scientists have, for the first, time created a type of "cyborg" tissue by embedding a three-dimensional network of functional, bio-compatible nanoscale wires into engineered human tissues.
As described in a paper published August 26 in Nature Materials, a multi-institutional research team led by Charles M. Lieber, the Mark Hyman, Jr. Professor of Chemistry at Harvard and Daniel Kohane, a Harvard Medical School professor in the Department of Anesthesia at Children's Hospital Boston developed a system for creating nanoscale "scaffolds" which could be seeded with ...
Manipulating the microbiome could help manage weight
2012-08-27
Vaccines and antibiotics may someday join caloric restriction or bariatric surgery as a way to regulate weight gain, according to a new study focused on the interactions between diet, the bacteria that live in the bowel, and the immune system.
Bacteria in the intestine play a crucial role in digestion. They provide enzymes necessary for the uptake of many nutrients, synthesize certain vitamins and boost absorption of energy from food. Fifty years ago, farmers learned that by tweaking the microbial mix in their livestock with low-dose oral antibiotics, they could accelerate ...
Scientists identify new gene that influences survival in ALS
2012-08-27
WORCESTER, MA — A team of scientists, including faculty at the University of Massachusetts Medical School (UMMS), have discovered a gene that influences survival time in amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig's disease). The study, published today in Nature Medicine, describes how the loss of activity of a receptor called EphA4 substantially extends the lifespan of people with the disease. When coupled with a UMMS study published last month in Nature identifying a new ALS gene (profilin-1) that also works in conjunction with EphA4, these findings point ...
Researchers develop method to grow artificial tissues with embedded nanoscale sensors
2012-08-27
Boston, Mass.—A multi-institutional research team has developed a method for embedding networks of biocompatible nanoscale wires within engineered tissues. These networks—which mark the first time that electronics and tissue have been truly merged in 3D—allow direct tissue sensing and potentially stimulation, a potential boon for development of engineered tissues that incorporate capabilities for monitoring and stimulation, and of devices for screening new drugs.
The researcher team—led by Daniel Kohane, MD, PhD, in the Department of Anesthesia at Boston Children's Hospital; ...
Pitt: Targeted oxidation-blocker prevents secondary damage after traumatic brain injury
2012-08-27
PITTSBURGH, Aug. 26, 2012 – Treatment with an agent that blocks the oxidation of an important component of the mitochondrial membrane prevented the secondary damage of severe traumatic brain injury and preserved function that would otherwise have been impaired, according to a research team from the University of Pittsburgh School of Medicine, Graduate School of Public Health and Department of Chemistry in a report published online today in Nature Neuroscience.
Annually, an estimated 1.7 million Americans sustain a traumatic brain injury (TBI) due to traffic accidents, ...
Vitamin B12 deficiency: Tracking the genetic causes
2012-08-27
Vitamin B12 is essential to human health. However, some people have inherited conditions that leave them unable to process vitamin B12. As a result they are prone to serious health problems, including developmental delay, psychosis, stroke and dementia. An international research team recently discovered a new genetic disease related to vitamin B12 deficiency by identifying a gene that is vital to the transport of vitamin into the cells of the body. This discovery will help doctors better diagnose this rare genetic disorder and open the door to new treatments. The findings ...
Obese and overweight women face increased risk of recurrence of most common type of breast cancer
2012-08-27
Extra pounds—even within the overweight but not obese range—are linked to a higher risk of recurrence of the most common type of breast cancer despite optimal cancer treatment, according to a new study published early online in CANCER, a peer-reviewed journal of the American Cancer Society. The study's results suggest that extra body fat causes hormonal changes and inflammation that may drive some cases of breast cancer to spread and recur despite treatment.
Women who are obese when they are diagnosed with breast cancer have an increased risk of dying prematurely compared ...