PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

In massive genome analysis ENCODE data suggests 'gene' redefinition

Potentially far-ranging implications for complex disease

2012-09-06
(Press-News.org) Cold Spring Harbor, N.Y. – Most people understand genes to be specific segments of DNA that determine traits or diseases that are inherited. Textbooks suggest that genes are copied ("transcribed") into RNA molecules, which are then used as templates for making protein – the highly diverse set of molecules that act as building blocks and engines of our cells. The truth, it now appears, is not so simple.

As part of a huge collaborative effort called ENCODE (Encyclopedia of DNA Elements), a research team led by Cold Spring Harbor Laboratory (CSHL) Professor Thomas Gingeras, Ph.D., today publishes a genome-wide analysis of RNA messages, called transcripts, produced within human cells.

Their analysis – one component of a massive release of research results by ENCODE teams from 32 institutes in 5 countries, with 30 papers appearing today in 3 different high-level scientific journals-- shows that three-quarters of the genome is capable of being transcribed. This figure is important because it indicates that nearly all of our genome is dynamic and active. It stands in marked contrast to consensus views prior to ENCODE's comprehensive research efforts, which suggested that only the small protein-encoding fraction of the genome was transcribed, and therefore important.

The vast amount of data generated with advanced technologies by Gingeras' group and others in the ENCODE project is likely to radically change the prevailing understanding of what defines a gene, the unit we routinely use, for instance, to speak of inheritable traits like eye color or to explain the causes of and susceptibility to most diseases, running the gamut from cancer to schizophrenia to heart disease.

In 2003 the ENCODE project consortium was set up by the U.S. government's National Human Genome Research Institute (NHGRI) to examine the newly minted sequence of the human genome in greater depth. At the time, the genome was thought of as a linear molecule of DNA with "genes" being contained within isolated sections that make up just 1%-2% of its total length. The long stretches of DNA between these gene islands were once thought to be mostly functionless spacers, padding, or even "junk DNA."

Through the work of Gingeras and others in this latest phase of the ENCODE project consortium, we now know that most of the DNA around protein-encoding genes is also capable of being transcribed into RNA – another way of saying that it has the potential of performing useful functions in cells.

In preliminary ENCODE results published in 2007, the researchers closely examined about 1% of the human genome. The initial results showed that much more of our DNA could be transcribed than previously thought. Far from being padding, many of these RNA messages appeared to be functional.

The Gingeras lab discovered potentially new classes of functional RNAs in this preliminary work. The additional knowledge that parts of one gene or functional RNA can reside within another were surprising, and suggested a picture of the architecture of our genome that was much more complex than previously thought.

What the new ENCODE data reveals

Two of the 30 papers published by Gingeras and other ENCODE colleagues, including CSHL Professor and HHMI Investigator Gregory Hannon, Ph.D., who is also a co-author in this study, today mark the culmination of project's second phase. What distinguishes the data analyzed in this phase is comprehensiveness. The initial observations of 2007 are now extended to cover the entire human genome – a tour-de-force effort in which the transcribed RNA from different sub-cellular compartments of 15 human cell lines was analyzed

Although the results vary between cell lines, a consensus picture is emerging. In addition to showing that up to three-quarters of our DNA may be transcribed into RNA, the data strongly suggests, according to Gingeras, that a large percent of non-protein-coding RNAs are localized within cells in a manner consistent with their having functional roles.

The current outstanding question concerns the nature and range of those functions. It is thought that these "non-coding" RNA transcripts act something like components of a giant, complex switchboard, controlling a network of many events in the cell by regulating the processes of replication, transcription and translation – that is, the making of proteins based on information carried by messenger RNAs.

With the understanding that so much of our DNA can be transcribed into RNA comes the realization that there is much less space between what we previously thought of as genes, Gingeras points out.

"We see the boundaries of what were assumed to be the regions between genes shrinking in length," he says, "and genic regions making many overlapping RNAs." It appears, he continues, that the boundaries of conventionally described genes are melding together, challenging the notion that a gene is a discrete, localized region of a genome separated by inert DNA. "New definitions of a gene are needed," Gingeras says.

What are the practical implications? According to Gingeras, they include being able to identify possible causes for natural traits such as height or hair loss and disease states such as cancer. Many genetic variations associated with a trait often map to what were formally believed to be "spacer" regions.

"With our increasingly deeper understanding that such regions are related to the neighboring or "distal" protein coding regions – via the creation of non-coding RNAs – we will now seek underlying explanations of the association of the genetic variation and traits of interest." This topic is explored in a second paper published today that summarizes the finding of all the consortium groups participating in the current phase of the ENCODE project: The ENCODE Project Consortium. 2012. An integrated encyclopedia of DNA elements in the human genome. Nature – doi:10.1038/nature11247.

"Exploration of the genome is akin to our efforts at exploring our physical universe," Gingeras says. "We expect to be amazed and excited by our future efforts to map and explore our personal genetic universes."

INFORMATION:

"Landscape of transcription in human cells" is published online in Nature on September 5, 2012. The authors are: Sarah Djebali, Carrie A. Davis and 83 others. The paper can be obtained online at doi:10.1038/nature11233. Other new ENCODE results can be found in the following journals: Nature (6 papers); Genome Research (18 papers); and Genome Biology (6 papers).

The full ENCODE Consortium data sets can be freely accessed through the ENCODE project portal as well as at the University of California at Santa Cruz genome browser, the National Center for Biotechnology Information, and the European Bioinformatics Institute. Topic threads that run through several different papers can be explored via the ENCODE microsite page at Nature.com/encode.

The research described in this release was supported by the National Human Genome Research Institute (NHGRI) production grants U54HG004557, U54HG004555, U54HG004576 and U54HG004558, and by the NHGRI pilot project grant R01HG003700. It was also supported by the NHGRI ARRA stimulus grant 1RC2HG005591, the National Science Foundation (NSF) grant 127375, the European Research Council (ERC) grant 249968, a research grant for the RIKEN Omics Science Center from the Japanese Ministry of Education, Culture, Sports, Science and Technology, and grants BIO2011-26205, CSD2007-00050 and INB-GNV1 from the Spanish Ministry of Science.

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory (CSHL) has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. CSHL is ranked number one in the world by Thomson Reuters for impact of its research in molecular biology and genetics. The Laboratory has been home to eight Nobel Prize winners. Today, CSHL's multidisciplinary scientific community is more than 360 scientists strong and its Meetings & Courses program hosts more than 12,500 scientists from around the world each year to its Long Island campus and its China center. Tens of thousands more benefit from the research, reviews, and ideas published in journals and books distributed internationally by CSHL Press. The Laboratory's education arm also includes a graduate school and programs for undergraduates as well as middle and high school students and teachers. CSHL is a private, not-for-profit institution on the north shore of Long Island. For more information, visit http://www.cshl.edu.

END



ELSE PRESS RELEASES FROM THIS DATE:

Millions of DNA switches that power human genome's operating system are discovered

Millions of DNA switches that power human genomes operating system are discovered
2012-09-06
The locations of millions of DNA 'switches' that dictate how, when, and where in the body different genes turn on and off have been identified by a research team led by the University of Washington in Seattle. Genes make up only 2 percent of the human genome and were easy to spot, but the on/off switches controlling those genes were encrypted within the remaining 98 percent of the genome. Without these switches, called regulatory DNA, genes are inert. Researchers around the world have been focused on identifying regulatory DNA to understand how the genome works. ...

Call for a new approach to fighting tuberculosis

2012-09-06
Boston, MA – Each year, nearly 2 million people die from tuberculosis – a treatable disease that has been brought under control in the United States, but continues to ravage other parts of the world. This health inequity should prompt a complete rethinking of the way tuberculosis is fought on a global level, argue Salmaan Keshavjee, MD, PhD, and Paul Farmer, MD, PhD, from Brigham and Women's Hospital (BWH). Their argument appears in an essay published September 6 in the New England Journal of Medicine. "The global approach to fighting tuberculosis has been lacking," ...

Comprehensive transcriptome analysis of human ENCODE cells

2012-09-06
ENCODE, an international research project led by the National Human Genome Research Institute (NHGRI), has produced and analyzed 1649 data sets designed to annotate functional elements of the entire human genome. Data on transcription starting sites (TSS) contributed by a research team at the RIKEN Omics Science Center provided key anchor points linking the epigenetic status of genes observed at the 5' end directly to their RNA output. The ENCODE (Encyclopedia of DNA Elements) project aims to delineate all functional elements encoded in the human genome. Thirty-two institutes ...

Quantum physics at a distance

Quantum physics at a distance
2012-09-06
This press release is available in German. Physicists at the University of Vienna and the Austrian Academy of Sciences have achieved quantum teleportation over a record distance of 143 km. The experiment is a major step towards satellite-based quantum communication. The results have now been published in "Nature" (Advance Online Publication/AOP). An international team led by the Austrian physicist Anton Zeilinger has successfully transmitted quantum states between the two Canary Islands of La Palma and Tenerife, over a distance of 143 km. The previous record, set ...

Tough gel stretches to 21 times its length, recoils, and heals itself

Tough gel stretches to 21 times its length, recoils, and heals itself
2012-09-06
Cambridge, Mass. - September 5, 2012 - A team of experts in mechanics, materials science, and tissue engineering at Harvard have created an extremely stretchy and tough gel that may pave the way to replacing damaged cartilage in human joints. Called a hydrogel, because its main ingredient is water, the new material is a hybrid of two weak gels that combine to create something much stronger. Not only can this new gel stretch to 21 times its original length, but it is also exceptionally tough, self-healing, and biocompatible—a valuable collection of attributes that opens ...

The ENCODE Project publishes new genomic insights in special issue of Genome Research

2012-09-06
Genome Research publishes online and in print today a special issue dedicated to The ENCODE (ENCyclopedia Of DNA Elements) Project, whose goal is to characterize all functional elements in the human genome. Since the completion of the pilot phase of the project in 2007, covering 1% of the genome, The ENCODE Consortium has fanned out across the genome to study function and regulation on an unprecedented scale. This special issue presents novel findings, methodologies, and resources from ENCODE that bring extensive insight to gene regulation and set the stage for future ...

BUSM/VA researchers examine new PTSD diagnosis criteria

2012-09-06
(Boston) – Results of a study led by researchers at Boston University School of Medicine (BUSM) and the Veterans Affairs (VA) Boston Healthcare System indicate that the proposed changes to the diagnosis of post-traumatic stress disorder (PTSD) will not substantially affect the number of people who meet criteria for the disorder. Mark W. Miller, PhD, associate professor at BUSM and a clinical research psychologist at the National Center for PTSD at VA Boston Healthcare System served as lead author of the study, which is published online in Psychological Trauma: Theory, ...

Seeing the birth of the universe in an atom of hydrogen

Seeing the birth of the universe in an atom of hydrogen
2012-09-06
Windows to the past, stars can unveil the history of our universe, currently estimated to be 14 billion years old. The farther away the star, the older it is — and the oldest stars are the most difficult to detect. Current telescopes can only see galaxies about 700 million years old, and only when the galaxy is unusually large or as the result of a big event like a stellar explosion. Now, an international team of scientists led by researchers at Tel Aviv University have developed a method for detecting galaxies of stars that formed when the universe was in its infancy, ...

Genome-wide scan maps mutations in deadly lung cancers; reveals embryonic gene link

2012-09-06
Scientists have completed a comprehensive map of genetic mutations linked to an aggressive and lethal type of lung cancer. Among the errors found in small cell lung cancers, the team of scientists, including those at the Johns Hopkins Kimmel Cancer Center, found an alteration in a gene called SOX2 associated with early embryonic development. "Small cell lung cancers are very aggressive. Most are found late, when the cancer has spread and typical survival is less than a year after diagnosis," says Charles Rudin, M.D., Ph.D., professor of oncology at the Johns Hopkins ...

Hospital-acquired UTIs rarely reported in data used to implement penalties

Hospital-acquired UTIs rarely reported in data used to implement penalties
2012-09-06
ANN ARBOR, Mich. — Aiming to cut expenses and improve care, a 2008 Medicare policy stopped paying hospitals extra to treat some preventable, hospital-acquired conditions – including urinary tract infections (UTIs) in patients after bladder catheters are placed. But a statewide analysis by the University of Michigan shows there was very little change in hospital payment due to removing pay for hospital-acquired catheter-associated UTIs. For all adult hospital stays in Michigan in 2009, eliminating payment for this infection decreased hospital pay for only 25 hospital ...

LAST 30 PRESS RELEASES:

Beyond the gut: A new frontier in IBS treatment by targeting the brain

New spin on quantum liquids: Quasi-1D dynamics in molecular spin systems

Spinal cord stimulation restores neural function, targets key feature of progressive neurodegenerative disease

Shut the nano gate! Electrical control of nanopore diameter

Cutting emissions in buildings and transport: Key strategies for 2050

How parents can protect children from mature and adult content

By studying neutron ‘starquakes’, scientists hope to transform their understanding of nuclear matter

Mouth bacteria may hold insight into your future brain function

Is cellular concrete a viable low-carbon alternative to traditional concrete for earthquake-resistant structures?

How does light affect citrus fruit coloration and the timing of peel and flesh ripening?

Male flies sharpened their eyesight to call the females' bluff

School bans alone not enough to tackle negative impacts of phone and social media use

Explaining science in court with comics

‘Living’ electrodes breathe new life into traditional silicon electronics

One in four chance per year that rocket junk will enter busy airspace

Later-onset menopause linked to healthier blood vessels, lower heart disease risk

New study reveals how RNA travels between cells to control genes across generations

Women health sector leaders good for a nation’s wealth, health, innovation, ethics

‘Good’ cholesterol may be linked to heightened glaucoma risk among over 55s

GLP-1 drug shows little benefit for people with Parkinson’s disease

Generally, things really do seem better in morning, large study suggests

Juicing may harm your health in just three days, new study finds

Forest landowner motivation to control invasive species depends on land use, study shows

Coal emissions cost India millions in crop damages

$10.8 million award funds USC-led clinical trial to improve hip fracture outcomes

University Hospitals Cleveland Medical Center among most reputable academic medical centers

Emilia Morosan on team awarded Kavli Foundation grant for quantum geometry-enabled superconductivity

Unlock sales growth: Implement “buy now, pay later” to increase customer spending

Research team could redefine biomedical research

Bridging a gap in carbon removal strategies

[Press-News.org] In massive genome analysis ENCODE data suggests 'gene' redefinition
Potentially far-ranging implications for complex disease