(Press-News.org) A warming climate and rising seas will enable salt marshes to more rapidly capture and remove carbon dioxide from the atmosphere, possibly playing a role in slowing the rate of climate change, according to a new study led by a University of Virginia environmental scientist and published in the Sept. 27 issue of the journal Nature.
Carbon dioxide is the predominant so-called "greenhouse gas" that acts as sort of an atmospheric blanket, trapping the Earth's heat. Over time, an abundance of carbon dioxide can change the global climate, according to generally accepted scientific theory. A warmer climate melts polar ice, causing sea levels to rise.
A large portion of the carbon dioxide in the atmosphere is produced by human activities, primarily the burning of fossil fuels to energize a rapidly growing world human population.
"We predict that marshes will absorb some of that carbon dioxide, and if other coastal ecosystems – such as seagrasses and mangroves – respond similarly, there might be a little less warming," said the study's lead author, Matt Kirwan, a research assistant professor of environmental sciences in the College of Arts & Sciences.
Salt marshes, made up primarily of grasses, are important coastal ecosystems, helping to protect shorelines from storms and providing habitat for a diverse range of wildlife, from birds to mammals, shell- and fin-fishes and mollusks. They also build up coastal elevations by trapping sediment during floods, and produce new soil from roots and decaying organic matter.
"One of the cool things about salt marshes is that they are perhaps the best example of an ecosystem that actually depends on carbon accumulation to survive climate change: The accumulation of roots in the soil builds their elevation, keeping the plants above the water," Kirwan said.
Salt marshes store enormous quantities of carbon, essential to plant productivity, by, in essence, breathing in the atmospheric carbon and then using it to grow, flourish and increase the height of the soil. Even as the grasses die, the carbon remains trapped in the sediment. The researchers' model predicts that under faster sea-level rise rates, salt marshes could bury up to four times as much carbon as they do now.
"Our work indicates that the value of these ecosystems in capturing atmospheric carbon might become much more important in the future, as the climate warms," Kirwan said.
But the study also shows that marshes can survive only moderate rates of sea level rise. If seas rise too quickly, the marshes could not increase their elevations at a rate rapid enough to stay above the rising water. And if marshes were to be overcome by fast-rising seas, they no longer could provide the carbon storage capacity that otherwise would help slow climate warming and the resulting rising water.
"At fast levels of sea level rise, no realistic amount of carbon accumulation will help them survive," Kirwan noted.
Kirwan and his co-author, Simon Mudd, a geosciences researcher at the University of Edinburgh in Scotland, used computer models to predict salt marsh growth rates under different climate change and sea-level scenarios.
###
The United States Geological Survey's Global Change Research Program supported the research.
PULLMAN, Wash.—Since the 1960s, when the defoliant Agent Orange was widely used in Vietnam, military, industry and environmental groups have debated the toxicity of its main ingredient, the chemical dioxin, and how it should be regulated.
But even if all the dioxin were eliminated from the planet, Washington State University researchers say its legacy will live on in the way it turns genes on and off in the descendants of people exposed over the past half century.
Writing in the journal PLoS ONE, biologist Michael Skinner and members of his lab say dioxin administered ...
Is aging inevitable? What factors make older tissues in the human body less able to maintain and repair themselves, as in the weakening and shrinkage of aging muscles in humans? A new study from Massachusetts General Hospital (MGH) investigators and collaborators at King's College London describes the mechanism behind impaired muscle repair during aging and a strategy that may help rejuvenate aging tissue by manipulating the environment in which muscle stem cells reside. The report will appear in the journal Nature and has received advance online release.
Rare muscle ...
VIDEO:
Studying gut bacteria can reveal a range of human illness. Now, new research shows that the composition of a person’s intestinal bacteria could play an important role in the development...
Click here for more information.
The number of people suffering from type 2 diabetes world-wide has risen rapidly in recent years, and scientists estimate that just as many people could be suffering from the illness without realising it. New research now indicates that your gut bacteria ...
Washington D.C., September 26, 2012 – The American Academy of Child and Adolescent Psychiatry (AACAP) is proud to announce its new Practice Parameter on issues related to and affecting gay, lesbian, bisexual, and gender variant youth.
Gay, lesbian, bisexual, and gender variant children and adolescents face unique developmental challenges and stressors that can influence their mental health and wellbeing. Social issues such as stigma, bullying, and discrimination, and personal factors like internalized prejudice and feelings of being different are just a few of the concerns ...
September 26, 2012, Shenzhen, China – BGI announces the online publication in the international journal Nature of a novel metagenomic study on human gut microbiota and their potential impact on type 2 diabetes (T2D), the most common form of diabetes. This work lays an important foundation for comprehensively understanding the genetic characteristics of gut microbiota and their relationship to T2D risk, as well as providing a new way of classifying microbes detected by DNA sequence. The work here also opens the way for transferring the potential value of a gut-microbiota-based ...
GAINESVILLE, Fla. --- A small African mammal with an unusual ability to regrow damaged tissues could inspire new research in regenerative medicine, a University of Florida study finds.
For years biologists have studied salamanders for their ability to regrow lost limbs. But amphibian biology is very different than human biology, so lessons learned in laboratories from salamanders are difficult to translate into medical therapies for humans. New research in the Sept. 27 issue of the journal Nature describes a mammal that can regrow new body tissues following an injury. ...
MOSS LANDING, CA — About 100 years ago, marine biologists hauled the first vampire squid up from the depths of the sea. Since that time, perhaps a dozen scientific papers have been published on this mysterious animal, but no one has been able to figure out exactly what it eats. A new paper by MBARI Postdoctoral Fellow Henk-Jan Hoving and Senior Scientist Bruce Robison shows for the first time that, unlike its relatives the octopuses and squids, which eat live prey, the vampire squid uses two thread-like filaments to capture bits of organic debris that sink down from the ...
PASADENA, Calif.—Almost everyone knows the feeling: you see a delicious piece of chocolate cake on the table, but as you grab your fork, you think twice. The cake is too fattening and unhealthy, you tell yourself. Maybe you should skip dessert.
But the cake still beckons.
In order to make the healthy choice, we often have to engage in this kind of internal struggle. Now, scientists at the California Institute of Technology (Caltech) have identified the neural processes at work during such self-regulation—and what determines whether you eat the cake.
"We seem to ...
A research team led by investigators at New York University and NYU School of Medicine has determined how cells that cause inflammatory ailments, such as Crohn's disease, multiple sclerosis, and arthritis, differentiate from stem cells and ultimately affect the clinical outcome of these diseases.
"We've found that hundreds of new genes are involved in the function and development of these cells," said co-author Richard Bonneau, an associate professor at New York University's Center for Genomics and Systems Biology and the Courant Institute of Mathematical Sciences. "This ...
VIDEO:
Under heavy fire from a human judge, UT^2 manages to fight his way to a nearby weapon and obliterate his opponent.
Click here for more information.
AUSTIN, Texas — An artificially intelligent virtual gamer created by computer scientists at The University of Texas at Austin has won the BotPrize by convincing a panel of judges that it was more human-like than half the humans it competed against.
The competition was sponsored by 2K Games and was set inside the virtual ...