(Press-News.org) BETHESDA, Md. (Dec. 17, 2012)—It is well known that people with Down syndrome (DS) suffer from marked muscle weakness. Even the simple tasks of independent living, such as getting out of a chair or climbing a flight of stairs, can become major obstacles. This can reduce the quality of life for those with DS and lead to a loss of independence. Now, a new study sheds light on some of the suspected causes of muscle weakness.
Led by scientists from Syracuse University, a research team has investigated muscle weakness in a mouse model of DS. "If we understand the cause of this muscle weakness, we can begin to look at potential therapies for treating it," said Patrick M. Cowley, lead researcher.
The investigators analyzed the soleus muscle—a muscle in the lower leg—and looked into whether the weakness was due to a deficiency of the muscle itself, independent of its activation by the nervous system.
"Surprisingly, we found that the strength of the muscle itself was the same between the DS and control mice—suggesting that factors in the nervous system may play a more dominant role in explaining muscle weakness in DS," said Cowley.
The article is entitled "Functional and Biochemical Characterization of the Soleus Muscle in Down Syndrome Mice: Insight into the Muscle Dysfunction Seen in the Human Condition," (http://bit.ly/TXsmby) It appears in the online edition of the American Journal of Physiology – Regulatory, Integrative and Comparative Physiology published by the American Physiological Society (APS).
Methodology
The researchers removed soleus muscles from 14 DS mice and 16 controls. They tested the muscles for strength, fatigue and recovery. They also assessed the distribution of fiber types in muscles from both groups.
Because there are three copies instead of two of chromosome 21 in persons with DS, the researchers looked at whether the additional genes caused over-expression of proteins that could then lead to oxidative stress. They also looked for well-known markers of oxidative injury.
A cell-level deficiency in processing of oxygen might also explain the muscle weakness. To determine if this was the case, the researchers tested for the level of two markers for oxidative capacity in the mitochondria, where oxygen metabolism takes place in cells.
Finally, the researchers used microarray analysis to investigate the gene expression and molecular pathways in the muscles of DS mice.
Results
There were no significant differences in the force production of the muscles between the two groups. This finding means that muscle weakness in DS was not due to inherent differences in muscle force generating capacity. Fatigability of the muscle from DS mice was not different from the controls. It did, however, show impaired recovery. There were no significant differences in muscle fiber types between the groups.
While one marker of the cells' ability to process oxygen was lower in DS mice, the other was similar in both groups, meaning that there was not a clear indication of mitochondrial limitation that could explain muscle weakness in DS.
Finally, the researchers found that SOD1, an important antioxidant, was overexpressed in DS mice. This was not a surprise because the gene for SOD1 is tripled in DS. However, there was no increase in markers of oxidative injury, suggesting that this over-expression did not led to oxidative stress in DS muscle.
There were numerous altered pathways in DS muscle revealed by microarray analysis including the breakdown of proteins, metabolism of glucose and fat, and neuromuscular transmission.
Importance of the Findings
This study shows the importance of better understanding muscle weakness in DS. Interestingly, the study found that the weakness was not due to a deficiency in the muscle itself. This may indicate that neural activation of the muscle plays a greater role in explaining weakness in persons with DS. "We now know that the muscle is not the major issue responsible for muscle weakness in DS mice," explained Cowley. "We need to look at the neural factors involved—from the motor systems in the brain to the neuromuscular junction—to determine the cause of muscular weakness in people with Down syndrome."
###Research Team
The research team was comprised of Patrick M. Cowley, Stefan Keslacy, and Keith C. DeRuisseau of Syracuse University, Frank A. Middleton of State University of New York Upstate Medical University, Lara R. DeRuisseau of Le Moyne College in Syracuse, NY, Jill A. Kanaley of the University of Missouri, and Bo Fernhall of the University of Illinois at Chicago.
Funding
This study was supported by the Le Moyne College Research & Development Committee and the Syracuse University School of Education.
NOTE TO EDITORS: The article is available online at http://bit.ly/TXsmby For additional information, or to schedule an interview with a member of the research team, please contact Donna Krupa at dkrupa@the-aps.org, @Phyziochick, or 301.634.7209.
Physiology is the study of how molecules, cells, tissues and organs function to create health or disease. The American Physiological Society (APS; www.the-APS.org/press) has been an integral part of the discovery process for 125 years. To keep up with the science, follow @Phyziochick on Twitter.
Study offers insights into role of muscle weakness in Down syndrome
2012-12-17
ELSE PRESS RELEASES FROM THIS DATE:
New technology may enable earlier cancer diagnosis
2012-12-17
CAMBRIDGE, MA -- Finding ways to diagnose cancer earlier could greatly improve the chances of survival for many patients. One way to do this is to look for specific proteins secreted by cancer cells, which circulate in the bloodstream. However, the quantity of these biomarkers is so low that detecting them has proven difficult.
A new technology developed at MIT may help to make biomarker detection much easier. The researchers, led by Sangeeta Bhatia, have developed nanoparticles that can home to a tumor and interact with cancer proteins to produce thousands of biomarkers, ...
Nanofibers clean sulfur from fuel
2012-12-17
CHAMPAIGN, Ill. — Sulfur compounds in petroleum fuels have met their nano-structured match.
University of Illinois researchers developed mats of metal oxide nanofibers that scrub sulfur from petroleum-based fuels much more effectively than traditional materials. Such efficiency could lower costs and improve performance for fuel-based catalysis, advanced energy applications and toxic gas removal.
Co-led by Mark Shannon, a professor of mechanical science and engineering at the U. of I. until his death this fall, and chemistry professor Prashant Jain, the researchers ...
Climate model is first to study climate effects of Arctic hurricanes
2012-12-17
AMHERST, Mass. – Though it seems like an oxymoron, Arctic hurricanes happen, complete with a central "eye," extreme low barometric pressure and towering 30-foot waves that can sink small ships and coat metal platforms with thick ice, threatening oil and gas exploration. Now climate scientists at the University of Massachusetts Amherst and in England report the first conclusive evidence that Arctic hurricanes, also known as polar lows, play a significant role in driving ocean water circulation and climate.
Results point to potentially cooler conditions in Europe and North ...
Nature Climate Change: Action by 2020 key for limiting climate change
2012-12-17
This is a joint press release from the International Institute for Applied Systems Analysis (IIASA) in Laxenburg, Austria, ETH Zurich in Switzerland, and the National Center for Atmospheric Research (NCAR) in Boulder, Colorado.
Limiting climate change to target levels will become much more difficult to achieve, and more expensive, if action is not taken soon, according to a new analysis from IIASA, ETH Zurich, and NCAR.
The new paper, published today in Nature Climate Change, explores technological, policy, and social changes that would need to take place in the near ...
Kidney failure under the microscope
2012-12-17
Better targeted treatments for 20 per cent of renal failure patients are on the horizon following a key discovery about the role of white blood cells in kidney inflammation.
In a study published today in Nature Medicine, researchers from Monash University tracked the movements of white blood cells, or leukocytes, leading to a new understanding of their behaviour in both healthy and diseased kidneys.
Leukocytes play important protective roles in the body's immune system, but in some cases they cause damaging inflammation. Glomerulonephritis is an inflammatory disease ...
Even the smallest stroke can damage brain tissue and impair cognitive function
2012-12-17
Blocking a single tiny blood vessel in the brain can harm neural tissue and even alter behavior, a new study from the University of California, San Diego has shown. But these consequences can be mitigated by a drug already in use, suggesting treatment that could slow the progress of dementia associated with cumulative damage to miniscule blood vessels that feed brain cells. The team reports their results in the December 16 advance online edition of Nature Neuroscience.
"The brain is incredibly dense with vasculature. It was surprising that blocking one small vessel could ...
New technique could make cell-based immune therapies for cancer safer and more effective
2012-12-17
A team led by Michel Sadelain, MD, PhD, Director of the Center for Cell Engineering at Memorial Sloan-Kettering Cancer Center, has shown for the first time the effectiveness of a new technique that could allow the development of more-specific, cell-based immune therapies for cancer. Their findings were reported online today in Nature Biotechnology.
Immunotherapies — which make use of patients' own immune cells that have been augmented in the laboratory — have shown some early success in the treatment of blood cancers including certain types of leukemia. For most cancers, ...
Ordinary heart cells become 'biological pacemakers' with injection of a single gene
2012-12-17
LOS ANGELES (EMBARGOED UNTIL DEC. 16, 2012 AT 1 P.M. EST) – Cedars-Sinai Heart Institute researchers have reprogrammed ordinary heart cells to become exact replicas of highly specialized pacemaker cells by injecting a single gene (Tbx18)–a major step forward in the decade-long search for a biological therapy to correct erratic and failing heartbeats.
The advance will be published in the Jan 8 issue of Nature Biotechnology and also will be available today on the journal's website.
"Although we and others have created primitive biological pacemakers before, this study ...
'Missing' polar weather systems could impact climate predictions
2012-12-17
Intense but small-scale polar storms could make a big difference to climate predictions according to new research from the University of East Anglia and the University of Massachusetts.
Difficult-to-forecast polar mesoscale storms occur frequently over the polar seas, however they are missing in most climate models.
Research published today in Nature Geoscience shows that their inclusion could paint a different picture of climate change in years to come.
Polar mesoscale storms are capable of producing hurricane-strength winds which cool the ocean and lead to changes ...
Chinese scientists discover evidence of giant panda's population history and local adaptation
2012-12-17
December 16, 2012, Shenzhen, China – A research team, led by Institute of Zoology of Chinese Academy of Sciences and BGI, has successfully reconstructed a continuous population history of the giant panda from its origin to the present. The findings suggested whereas global changes in climate were the primary drivers in panda population fluctuation for millions of years, human activities were likely to underlie recent population divergence and serious decline. This work reveals a good example for assessing and establishing the best conservation method for other endangered ...