(Press-News.org) More than a century after it was first identified, Harvard scientists are shedding new light on a little-understood neural feedback mechanism that may play a key role in how the olfactory system works in the brain.
As described in a December 19 paper in Neuron by Venkatesh Murthy, Professor of Molecular and Cellular Biology, researchers have, for the first time, described how that feedback mechanism works by identifying where the signals go, and which type of neurons receive them. Three scientists from the Murthy lab were involved in the work: Foivos Markopoulos, Dan Rokni and David Gire.
"The image of the brain as a linear processor is a convenient one, but almost all brains, and certainly mammalian brains, do not rely on that kind of pure feed-forward system," Murthy explained. "On the contrary, it now appears that the higher regions of the brain which are responsible for interpreting olfactory information are communicating with lower parts of the brain on a near-constant basis."
Though researchers have known about the feedback system for decades, key questions about its precise workings, such as which neurons in the olfactory bulb receive the feedback signals, remained a mystery, partly because scientists simply didn't have the technological tools needed to activate individual neurons and individual pathways.
"One of the challenges with this type of research is that these feedback neurons are not the only neurons that come back to the olfactory bulb," Murthy explained. "The challenge has always been that there's no easy way to pick out just one type of neuron to activate."
To do it, Murthy and his team turned to a technique called optogenetics.
Using a virus that has been genetically-modified to produce a light-sensitive protein, Murthy and his team marked specific neurons, which become active when hit with laser light. Researchers were then able to trace the feedback mechanism from the brain's processing centers back to the olfactory bulb.
Reaching that level of precision was critical, Murthy explained, because while olfactory bulb contains many "principal" neurons which are responsible for sending signals on to other parts of the brain, it is also packed with interneurons, which appear to play a role in formatting olfactory information as it comes into the brain.
Without that formatting process, Murthy said, the brain would likely have trouble interpreting the wide range of signals – from very weak to very strong – it may encounter.
"If you make a system that is very good at detecting weak signals, it becomes saturated as the signal gets stronger, and eventually it's impossible to differentiate between strong signals," Murthy said. "To avoid that problem, brain circuits use a process called gain control [Peter: there can be both automatic as well as selective gain control]. By inhibiting certain neurons, it ensures that you stay within the detection range, so you don't miss the weak things, but you don't miss the very strong things either."
Earlier studies had hinted that the interneurons in the olfactory bulb are the primary target of the feedback signals, but Murthy's study is the first to definitively prove it, and to show that those feedback signals effectively inhibit the activity of the principal neurons.
"When the cortical area decides to send these signals back to the olfactory bulb, it's effectively turning down the activity of these principal neurons," Murthy said. "Why does the brain do this? Our theory is that the feedback is a way for the cortex to say, 'I heard you.' As the olfactory information is sent to higher regions of the brain, these signals come back and turn down the volume on the input."
While similar feedback systems have been identified in other parts of the brain, the extent of the olfactory feedback was surprising. Murthy's research showed that the system doesn't simply send signals back to the olfactory bulb, but sends them to its very first layer of neurons.
"That feedback is coming back to the very first synapse, if you will," he said.
Even more surprising, Murthy said, was evidence that the olfactory bulb's principal neurons were also receiving feedback signals – albeit weak ones – which appeared to prime them for incoming signals.
"These weak connections help the principal neuron get over the top when it's listening to weak inputs," Murthy said. "If there's a weak smell coming in, but it's not able to drive the principal neuron over the threshold to signal the rest of the brain, but say you're in an environment where you're primed to smell that weak smell – we believe this feedback from this higher area of the brain is sort of tickling these principal neurons, so when there's a weak input you're able to smell it.
"For most animals, smell is a very, very important thing," Murthy added. "If they are in an environment where there's one overwhelming smell that's irrelevant, they need to be able to detect a weak smell that may signal danger. We are hypothesizing that this mechanism, where the cortex is talking back to the olfactory bulb and suppressing neurons, through this feedback they may be able to detect that weak signal."
### END
Helping the nose know
Researcher answers 100-year-old question about how olfactory feedback mechanism works
2012-12-19
ELSE PRESS RELEASES FROM THIS DATE:
Men with fibromyalgia often go undiagnosed, Mayo Clinic study suggests
2012-12-19
ROCHESTER, Minn. -- Fibromyalgia is a complex illness to diagnose and to treat. There is not yet a diagnostic test to establish that someone has it, there is no cure and many fibromyalgia symptoms -- pain, fatigue, problems sleeping and memory and mood issues -- can overlap with or get mistaken for other conditions. A new Mayo Clinic study suggests that many people who have fibromyalgia, especially men, are going undiagnosed. The findings appear in the online edition of the journal Arthritis Care & Research.
More research is needed, particularly on why men who reported ...
High-throughput sequencing shows potentially hundreds of gene mutations related to autism
2012-12-19
Genomic technology has revolutionized gene discovery and disease understanding in autism, according to an article published in the December 20 issue of the journal Neuron.
The paper highlights the impact of a genomic technology called high-throughput sequencing (HTS) in discovering numerous new genes that are associated with autism spectrum disorder (ASD).
"These new discoveries using HTS confirm that the genetic origins of autism are far more complex than previously believed," said Joseph D. Buxbaum, PhD, Director of the Seaver Autism Center at the Icahn School of ...
Auto-immune disease: The viral route is confirmed
2012-12-19
Why would our immune system turn against our own cells? This is the question that the combined Inserm/CNRS/ Pierre and Marie Curie University/Association Institut de Myologie have strived to answer in their "Therapies for diseases of striated muscle", concentrating in particular on the auto-immune disease known as myasthenia gravis. Through the project known as FIGHT-MG (Fight Myasthenia Gravis), financed by the European Commission and coordinated by Inserm, Sonia Berrih-Aknin and Rozen Le Panse have contributed proof of the concept that a molecule imitating a virus may ...
Toward a pill to enable celiac patients to eat foods containing gluten
2012-12-19
Scientists are reporting an advance toward development of a pill that could become celiac disease's counterpart to the lactase pills that people with lactose intolerance can take to eat dairy products without risking digestive upsets. They describe the approach, which involves an enzyme that breaks down the gluten that causes celiac symptoms, in the Journal of the American Chemical Society.
Justin Siegel, Ingrid Swanson Pultz and colleagues explain that celiac disease is an autoimmune disorder in which the gluten in wheat, rye or barley products causes inflammation in ...
A new, super-nutritious puffed rice for breakfast cereals and snacks
2012-12-19
A new process for blowing up grains of rice produces a super-nutritious form of puffed rice, with three times more protein and a rich endowment of other nutrients that make it ideal for breakfast cereals, snack foods and nutrient bars for school lunch programs, scientists are reporting. Their study appears in ACS' Journal of Agricultural and Food Chemistry.
Syed S.H. Rizvi and colleagues explain that commercial puffed rice is made by steam extrusion. An extruder squeezes rice flour mixed with water through a narrow opening at high temperature and pressure. On exiting ...
Sustainable way to make a prized fragrance ingredient
2012-12-19
Large amounts of a substitute for one of the world's most treasured fragrance ingredients — a substance that also has potential anti-cancer activity — could be produced with a sustainable new technology, scientists are reporting. Published in the Journal of the American Chemical Society, the advance enables cultures of bacteria to produce a substitute for natural ambergris, which sells for hundreds of dollars an ounce.
Laurent Daviet, Michel Schalk and colleagues explain that ambergris, a waxy substance excreted by sperm whales, has been prized as a fragrance ingredient ...
Wine and tea are key ingredients in South African plan to grow domestic research
2012-12-19
The South African government is investing in scientific research to foster production of agricultural products like pinotage (the country's signature red wine) and honeybush (source of a tea so fragrant that a potful can perfume an entire house) to create jobs and boost the economy. That effort and others aimed at developing a globally competitive research enterprise are the topics of cover stories in the current issue of Chemical & Engineering News (C&EN), the weekly newsmagazine of the American Chemical Society, the world's largest scientific society.
Britt E. Erickson, ...
University of Texas at Austin Team develops a microwave-assisted method for producing thin films
2012-12-19
Growth of new materials is the cornerstone of materials science - a highly inter-disciplinary field of science that touches every aspect of our lives from computers and cell phones to the clothes we wear. At the same time, the energy crisis has brought the spotlight on synthesis and growth of materials for clean energy technologies, such as solar cells and batteries. However, researchers in these areas do not simply grow materials —they assemble the atoms and molecules that form so-called thin films on various substrates. It is a process that is highly complex, time-consuming ...
Described a key mechanism in muscle regeneration
2012-12-19
Researchers at the Bellvitge Biomedical Research Institute (IDIBELL) have described a new selective target in muscle regeneration. This is the association of alpha-enolase protein and plasmin. The finding could be used to develop new treatments to regenerate muscular injuries or dystrophies. The study has been published in PLOS ONE journal.
Skeletal muscle has a great regeneration capacity after injury or genetic diseases such as Duchenne muscular dystrophy, the most common neuromuscular disorder in children. This condition is due to a defect in the gene of dystrophin, ...
Experiencing discrimination increases risk-taking, anger, and vigilance
2012-12-19
Experiencing rejection not only affects how we think and feel — over the long-term it can also influence our physical and mental health. New research suggests that when rejection comes in the form of discrimination, people respond with a pattern of thoughts, behaviors, and physiological responses that may contribute to overall health disparities.
"Psychological factors, like discrimination, have been suggested as part of the causal mechanisms that explain how discrimination gets 'under the skin' to affect health," says psychological scientist and senior researcher Wendy ...
LAST 30 PRESS RELEASES:
Scientists track evolution of pumice rafts after 2021 underwater eruption in Japan
The future of geothermal for reliable clean energy
Study shows end-of-life cancer care lacking for Medicare patients
Scented wax melts may not be as safe for indoor air as initially thought, study finds
Underwater mics and machine learning aid right whale conservation
Solving the case of the missing platinum
Glass fertilizer beads could be a sustained nutrient delivery system
Biobased lignin gels offer sustainable alternative for hair conditioning
Perovskite solar cells: Thermal stresses are the key to long-term stability
University of Houston professors named senior members of the National Academy of Inventors
Unraveling the mystery of the missing blue whale calves
UTA partnership boosts biomanufacturing in North Texas
Kennesaw State researcher earns American Heart Association award for innovative study on heart disease diagnostics
Self-imaging of structured light in new dimensions
Study highlights successes of Virginia’s oyster restoration efforts
Optimism can encourage healthy habits
Precision therapy with microbubbles
LLM-based web application scanner recognizes tasks and workflows
Pattern of compounds in blood may indicate severity of gestational hypertension and preeclampsia
How does innovation policy respond to the challenges of a changing world?
What happens when a diet targets ultra-processed foods?
University of Vaasa, Finland, conducts research on utilizing buildings as energy sources
Stealth virus: Zika virus builds tunnels to covertly infect cells of the placenta
The rising tide of sand mining: a growing threat to marine life
Contemporary patterns of end-of-life care among Medicare beneficiaries with advanced cancer
Digital screen time and nearsightedness
Postoperative weight loss after anti-obesity medications and revision risk after joint replacement
New ACS research finds low uptake of supportive care at the end-of-life for patients with advanced cancer
New frailty measurement tool could help identify vulnerable older adults in epic
Co-prescribed stimulants, opioids linked to higher opioid doses
[Press-News.org] Helping the nose knowResearcher answers 100-year-old question about how olfactory feedback mechanism works