(Press-News.org) One approach to understanding components in living organisms is to attempt to create them artificially, using principles of chemistry, engineering and genetics. A suite of powerful techniques—collectively referred to as synthetic biology—have been used to produce self-replicating molecules, artificial pathways in living systems and organisms bearing synthetic genomes.
In a new twist, John Chaput, a researcher at Arizona State University's Biodesign Institute and colleagues at the Department of Pharmacology, Midwestern University, Glendale, AZ have fabricated an artificial protein in the laboratory and examined the surprising ways living cells respond to it.
"If you take a protein that was created in a test tube and put it inside a cell, does it still function," Chaput asks. "Does the cell recognize it? Does the cell just chew it up and spit it out?" This unexplored area represents a new domain for synthetic biology and may ultimately lead to the development of novel therapeutic agents.
The research results, reported in the advanced online edition of the journal ACS Chemical Biology, describe a peculiar set of adaptations exhibited by Escherichia coli bacterial cells exposed to a synthetic protein, dubbed DX. Inside the cell, DX proteins bind with molecules of ATP, the energy source required by all biological entities.
"ATP is the energy currency of life," Chaput says. The phosphodiester bonds of ATP contain the energy necessary to drive reactions in living systems, giving up their stored energy when these bonds are chemically cleaved. The depletion of available intracellular ATP by DX binding disrupts normal metabolic activity in the cells, preventing them from dividing, (though they continue to grow).
After exposure to DX, the normally spherical E. coli bacteria develop into elongated filaments. Within the filamentous bacteria, dense intracellular lipid structures act to partition the cell at regular intervals along its length (see figure 1). These unusual structures, which the authors call endoliposomes, are an unprecedented phenomenon in such cells.
"Somewhere along the line of this filamentation, other processes begin to happen that we haven't fully understood at the genetic level, but we can see the results phenotypically," Chaput says. "These dense lipid structures are forming at very regular regions along the filamented cell and it looks like it could be a defense mechanism, allowing the cell to compartmentalize itself." This peculiar adaptation has never been observed in bacterial cells and appears unique for a single-celled organism.
Producing a synthetic protein like DX, which can mimic the elaborate folding characteristics of naturally occurring proteins and bind with a key metabolite like ATP is no easy task. As Chaput explains, a clever strategy known as mRNA display was used to produce, fine-tune and amplify synthetic proteins capable of binding ATP with high affinity and specificity, much as a naturally occurring ATP-binding protein would.
First, large libraries of random sequence peptides are formed from the four nucleic acids making up DNA, with each strand measuring around 80 nucleotides in length. These sequences are then transcribed into RNA with the help of an enzyme—RNA polymerase. If a natural ribosome is then introduced, it attaches to the strand and reads the random sequence RNA as though it was a naturally-occurring RNA, generating a synthetic protein as it migrates along the strand. In this way, synthetic proteins based on random RNA sequences can be generated.
Exposing the batch of synthetic proteins to the target molecule and extracting those that bind can then select for ATP-binding proteins. But as Chaput explains, there's a problem: "The big question is how do you recover that genetic information? You can't reverse transcribe a protein back into DNA. You can't PCR amplify a protein. So we have to do all these molecular biology tricks."
The main trick involves an earlier step in the process. A molecular linker is chemically attached to the RNA templates, such that each RNA strand forms a bond with its newly translated protein. The mRNA-protein hybrids are exposed to selection targets (like ATP) over consecutive rounds of increasing stringency. After each round of selection, those library members that remain bound to the target are reverse-transcribed into cDNA (using their conveniently attached RNA messages), and then PCR amplified.
In the current study, E. coli cells exposed to DX transitioned into a filamentous form, which can occur naturally when such cells are subject to conditions of stress. The cells display low metabolic activity and limited cell division, presumably owing to their ATP-starved condition.
The study also examined the ability of E. coli to recover following DX exposure. The cells were found to enter a quiescent state known as viable but non-culturable (VBNC), meaning that they survived ATP sequestration and returned to their non-filamentous state after 48 hours, but lost their reproductive capacity. Further, this condition was difficult to reverse and seems to involve a fundamental reprogramming of the cell.
In an additional response to DX, the filamentous cells form previously undocumented structures, which the authors refer to as endoliposomes. These dense lipid concentrations, spanning the full width of the filamented E. coli, segment the cells into distinct compartments, giving the cells a stringbean-like appearance under the microscope.
The authors speculate that this adaptation may be an effort to maintain homeostasis in regions of the filamentous cell, which have essentially been walled off from the intrusion of ATP-depleting DX. They liken endoliposomes to the series of water-tight compartments found in submarines which are used to isolate damaged sections of the ship and speculate that DX-exposed cells are partitioning their genetic information into regions where it can be safely quarantined. Such self-compartmentalization is known to occur in some eukaryotic cells, but has not been previously observed in prokaryotes like E. coli.
The research indicates that there is still a great deal to learn about bacterial behavior and the repertoire of responses available when such cells encounter novel situations, such as an unfamiliar, synthetic protein. The study also notes that many infectious agents rely on a dormant state, (similar to the VBNC condition observed in the DX-exposed E. coli), to elude detection by antibiotics. A better understanding of the mechanisms driving this behavior could provide a new approach to targeting such pathogens.
The relative safety of E. coli as a model organism for study may provide a fruitful tool for more in-depth investigation of VBNC states in pathogenic organisms. Further, given ATP's central importance for living organisms, its suppression may provide another avenue for combating disease. One example would be an engineered bacteriophage capable of delivering DX genes to pathogenic organisms.
INFORMATION:
In addition to his appointment at the Biodesign Institute, John Chaput is an associate professor in the Department of Chemistry and Biochemistry, in the College of Liberal Arts & Sciences
Written by Richard Harth
Science Writer: The Biodesign Institute
richard.harth@asu.edu
Strange behavior: New study exposes living cells to synthetic protein
2012-12-28
ELSE PRESS RELEASES FROM THIS DATE:
Penn team developing new class of malaria drugs using essential calcium enzyme
2012-12-28
PHILADELPHIA - Calpain, a calcium-regulated enzyme, is essential to a host of cellular processes, but can cause severe problems in its overactivated state. It has been implicated as a factor in muscular dystrophy, AIDS, Alzheimer's disease, multiple sclerosis, and cancer. As such, finding and exploiting calpain inhibitors is an important area of research.
A team from the Perelman School of Medicine, University of Pennsylvania, in collaboration with the University of California at San Francisco and the Department of Biochemistry and Protein Function Discovery at Queen's ...
Vanderbilt study examines Affordable Care Act's impact on uncompensated care
2012-12-28
Nashville (Tenn.) - The decision by several states not to expand Medicaid health insurance for the poor may create unintended cuts for hospitals that provide uncompensated care, according to a study by John Graves, Ph.D., a Vanderbilt policy expert in the Department of Preventive Medicine.
Graves used financial data from U.S. hospitals and insurance data in each state to predict cuts in Medicare and Medicaid disproportionate share (DSH) funds paid to the nearly three-fourths of U.S. hospitals that serve low-income patients. The results, published in the Dec. 20 issue ...
Penn team mimicking a natural defense against malaria to develop new treatments
2012-12-28
PHILADELPHIA - One of the world's most devastating diseases is malaria, responsible for at least a million deaths annually, despite global efforts to combat it. Researchers from the Perelman School of Medicine at the University of Pennsylvania, working with collaborators from Drexel University, The Children's Hospital of Philadelphia, and Johns Hopkins University, have identified a protein in human blood platelets that points to a powerful new weapon against the disease. Their work was published in this months' issue of Cell Host and Microbe.
Malaria is caused by parasitic ...
2 new species of orchid found in Cuba
2012-12-28
Researchers from the University of Vigo, in collaboration with the Environmental Services Unit at the Alejandro de Humboldt National Park (Cuba), have discovered two new species of Caribbean orchid.
The Caribbean islands have been natural laboratories and a source of inspiration for biologists for over two centuries now. Suffice to say that the studies by Charles Darwin and Alfred Russel Wallace in the tropical archipelagos contributed to the emergence of the theory of evolution.
In this case, a Spanish research team from the University of Vigo has discovered two new ...
Broader background checks and denial criteria could help prevent mass shooting catastrophes
2012-12-28
UC Davis Health System is improving lives and transforming health care by providing excellent patient care, conducting groundbreaking research, fostering innovative, interprofessional education, and creating dynamic, productive partnerships with the community. The academic health system includes one of the country's best medical schools, a 619-bed acute-care teaching hospital, a 1000-member physician's practice group and the new Betty Irene Moore School of Nursing. It is home to a National Cancer Institute-designated comprehensive cancer center, an international neurodevelopmental ...
Trying to halt hepatitis C's molecular hijacking
2012-12-28
AURORA, Colo. (Dec. 27, 2012) – Researchers at the University of Colorado School of Medicine have figured out intimate details of how the hepatitis C virus takes over an invaded cell, a breakthrough that could point to way for new treatments for the virus.
Hep C hijacks the machinery by which a cell makes proteins and uses it instead to create proteins for the virus. Over the last two decades, researchers have figured out that Hep C uses an RNA molecule to do this. Now they're trying to fill in the details.
One key detail is reported in a paper published online Dec. ...
Rush University Medical Center scientists home in on cause of osteoarthritis pain
2012-12-28
(CHICAGO)--Researchers at Rush University Medical Center, in collaboration with researchers at Northwestern University, have identified a molecular mechanism central to the development of osteoarthritis (OA) pain, a finding that could have major implications for future treatment of this often-debilitating condition.
"Clinically, scientists have focused on trying to understand how cartilage and joints degenerate in osteoarthritis. But no one knows why it hurts," said Dr. Anne-Marie Malfait, associate professor of biochemistry and of internal medicine at Rush, who led ...
The factor that could determine future breast cancer treatment
2012-12-28
Australian scientists have shown how a 'transcription factor' causes breast cancer to develop an aggressive subtype that lacks sensitivity to oestrogen and does not respond to anti-oestrogen therapies such as Tamoxifen and aromatase inhibitors.
Transcription factors are molecules that switch genes on or off. In this case, the transcription factor known as 'ELF5' inhibits sensitivity to oestrogen very early in the life of a breast cancer cell.
In 2008, Associate Professor Chris Ormandy from Sydney's Garvan Institute of Medical Research showed that ELF5 was responsible ...
Iconic Film Legends, Rock Stars, International CEO's, TV Personalities and Regulars Folks - Changing Course Through Hand Analysis
2012-12-28
Lisa brings a lifetime of experience reading well over 20,000 hands from around the globe. Her readings include iconic film stars, rock stars, international CEO's, television personalities and people just like you. Lisa has an unparalleled history in Hand Analysis that brings a rich, deep understanding of human nature reflected in the lines on hand. Her latest e-book called "Relationship Rescue using CPR," teaches what your map of original programming is, and how to go beyond any conflicts.
Lisa Greenfield is the founder and CEO of TruthinHand.com. Her business ...
MediPurpose Endorses 11th Annual International Sharps Injury Safety Month
2012-12-28
MediPurpose(tm), a master distributor and manufacturer of medical products, today announced its endorsement of the 11th Annual International Sharps Injury Prevention Month.
Promoted by the International Sharps Injury Prevention Society (ISIPS), the sharps injury awareness campaign is launched every December 1 in conjunction with World AIDS Day.
According to the United States Department of Labor's Occupational Safety & Health Administration (OSHA), a sharps injury -- also known as a needlestick injury -- is a wound caused by a needle that accidentally punctures ...