(Press-News.org) BOSTON—Two new mutations that collectively occur in 71 percent of malignant melanoma tumors have been discovered in what scientists call the "dark matter" of the cancer genome, where cancer-related mutations haven't been previously found.
Reporting their findings in the Jan. 24 issue of Science Express, the researchers from Dana-Farber Cancer Institute and the Broad Institute said the highly "recurrent" mutations – occurring in the tumors of many people – may be the most common mutations in melanoma cells found to date.
The researchers said these cancer-associated mutations are the first to be discovered in the vast regions of DNA in cancer cells that do not contain genetic instructions for making proteins. The mutations are located in non-protein-coding DNA that regulates the activity of genes.
This non-coding DNA, much of which was previously dismissed as "junk," accounts for 99 percent of a cell's genome. A large number of oncogenic mutations in cancer have been identified in the past several decades, but all have been found within the actual genetic blueprints for proteins.
"This new finding represents an initial foray into the 'dark matter' of the cancer genome," said Levi Garraway, MD, PhD, of Dana-Farber and the Broad and the article's senior author.
"In addition, this represents the discovery of two of the most prevalent melanoma gene mutations. Considered as a whole, these two TERT promoter mutations are even more common than BRAF mutations in melanoma. Altogether, this discovery could cause us to think more creatively about the possible benefits of targeting TERT in cancer treatment or prevention."
The mutations affect a promoter region – a stretch of DNA code that regulates the expression of a gene – adjacent to the TERT gene. TERT contains the recipe for making telomerase reverse transcriptase, an enzyme that can make cells virtually immortal, and is often found overexpressed in cancer cells. A promoter region of DNA controls the rate of a gene's transcription – the copying of its DNA recipe into a message used by the cell to manufacture a protein.
"We think these mutations in the promoter region are potentially one way the TERT gene can be activated," said Franklin Huang, MD, PhD, co-first author of the report along with Harvard MD-PhD student Eran Hodis, of Dana-Farber and the Broad Institute.
To investigate the mutation's effect, the researchers hooked the mutant TERT promoter to a gene that makes luciferase – a light-emitting protein. They observed that the mutant promoter increased the production of luciferase in laboratory cell lines. In the same way, the scientists presume, the mutant promoter in human pigmented skin cells can send the TERT gene into overdrive, potentially contributing to the development of melanoma.
The mutations were discovered when the scientists sifted through data from whole-genome sequencing of malignant melanoma tumors. Unlike "whole-exome" searches that examine only the protein-coding DNA of a cell's genome, whole-genome searches scan all of the DNA, including the non-coding regions.
In analyzing whole-genome data, the investigators discovered the two somatic, or not-inherited, mutations in 17 of 19 (89 percent) of the tumors. Next, they sequenced a larger number of melanoma tumors and found that the two mutations were present in 71 percent of tumors in total.
The researchers said the same mutations are present in cell lines from some other malignancies, and that preliminary evidence showed they might be unusually common in bladder and liver cancers. They also noted that the discovery of these important mutations in DNA previously not linked to cancer-causing alterations highlights the value of whole-genome searches of tumor DNA.
INFORMATION:
Other authors include Mary Jue Xu, a student at Harvard Medical School; Gregory V. Kryukov, PhD, of the Broad; and Lynda Chin, MD, of M.D. Anderson Cancer Center.
The research was supported in part by the National Institutes of Health (T32 CA009172, T32GM07753, DP2OD002750, and R33CA126674), the Mittelman Family Fellowship, the American Cancer Society, the Novartis Institutes for Biomedical Research, the Melanoma Research Alliance, and the Starr Cancer Consortium.
About Dana-Farber Cancer Institute
Dana-Farber Cancer Institute is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute. It provides adult cancer care with Brigham and Women's Hospital as Dana-Farber/Brigham and Women's Cancer Center and it provides pediatric care with Boston Children's Hospital as Dana-Farber/Children's Hospital Cancer Center. Dana-Farber is the top ranked cancer center in New England, according to U.S. News & World Report, and one of the largest recipients among independent hospitals of National Cancer Institute and National Institutes of Health grant funding. Follow Dana-Farber on Twitter: @danafarber or Facebook.
About the Broad Institute of MIT and Harvard
The Eli and Edythe L. Broad Institute of MIT and Harvard was founded in 2003 to empower this generation of creative scientists to transform medicine with new genome-based knowledge. The Broad Institute seeks to describe all the molecular components of life and their connections; discover the molecular basis of major human diseases; develop effective new approaches to diagnostics and therapeutics; and disseminate discoveries, tools, methods and data openly to the entire scientific community.
Founded by MIT, Harvard and its affiliated hospitals, and the visionary Los Angeles philanthropists Eli and Edythe L. Broad, the Broad Institute includes faculty, professional staff and students from throughout the MIT and Harvard biomedical research communities and beyond, with collaborations spanning over a hundred private and public institutions in more than 40 countries worldwide. For further information about the Broad Institute, go to www.broadinstitute.org.
Researchers discover new mutations driving malignant melanoma
2013-01-25
ELSE PRESS RELEASES FROM THIS DATE:
Red explosions: The secret life of binary stars is revealed
2013-01-25
(Edmonton) A University of Alberta professor has revealed the workings of a celestial event involving binary stars that results in an explosion so powerful it ranks close to Supernovae in luminosity.
Astrophysicists have long debated about what happens when binary stars, two stars that orbit one another, come together in a common envelope.
When this dramatic cannibalizing event ends there are two possible outcomes; the two stars merge into a single star or an initial binary transforms in an exotic short-period one.
The event is believed to take anywhere from a dozen ...
Gene sequencing project mines data once considered 'junk' for clues about cancer
2013-01-25
(MEMPHIS, Tenn. – January 24, 2013) Genome sequencing data once regarded as junk is now being used to gain important clues to help understand disease. The latest example comes from the St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project, where scientists have developed an approach to mine the repetitive segments of DNA at the ends of chromosomes for insights into cancer.
These segments, known as telomeres, had previously been ignored in next-generation sequencing efforts. That is because their repetitive nature meant that the ...
Newly discovered 'scarecrow' gene might trigger big boost in food production
2013-01-25
ITHACA, N.Y. – With projections of 9.5 billion people by 2050, humanity faces the challenge of feeding modern diets to additional mouths while using the same amounts of water, fertilizer and arable land as today.
Cornell University researchers have taken a leap toward meeting those needs by discovering a gene that could lead to new varieties of staple crops with 50 percent higher yields.
The gene, called Scarecrow, is the first discovered to control a special leaf structure, known as Kranz anatomy, which leads to more efficient photosynthesis. Plants photosynthesize ...
The storm that never was: Why the weatherman is often wrong
2013-01-25
Have you ever woken up to a sunny forecast only to get soaked on your way to the office? On days like that it's easy to blame the weatherman.
But BYU mechanical engineering professor Julie Crockett doesn't get mad at meteorologists. She understands something that very few people know: it's not the weatherman's fault he's wrong so often.
According to Crockett, forecasters make mistakes because the models they use for predicting weather can't accurately track highly influential elements called internal waves.
Atmospheric internal waves are waves that propagate between ...
Prenatal inflammation linked to autism risk
2013-01-25
Maternal inflammation during early pregnancy may be related to an increased risk of autism in children, according to new findings supported by the National Institute of Environmental Health Sciences (NIEHS), part of the National Institutes of Health. Researchers found this in children of mothers with elevated C-reactive protein (CRP), a well-established marker of systemic inflammation.
The risk of autism among children in the study was increased by 43 percent among mothers with CRP levels in the top 20th percentile, and by 80 percent for maternal CRP in the top 10th ...
Virginia Tech computer scientists develop new way to study molecular networks
2013-01-25
In biology, molecules can have multi-way interactions within cells, and until recently, computational analysis of these links has been "incomplete," according to T. M. Murali, associate professor of computer science in the College of Engineering at Virginia Tech.
His group authored an article on their new approach to address these shortcomings, titled "Reverse Engineering Molecular Hypergraphs," that received the Best Paper Award at the recent 2012 ACM Conference on Bioinformatics, Computational Biology and Biomedicine.
Intricate networks of connections among molecules ...
'Cool' kids in middle school bully more, UCLA psychologists report
2013-01-25
Bullying, whether it's physical aggression or spreading rumors, boosts the social status and popularity of middle school students, according to a new UCLA psychology study that has implications for programs aimed at combatting school bullying. In addition, students already considered popular engage in these forms of bullying, the researchers found.
The psychologists studied 1,895 ethnically diverse students from 99 classes at 11 Los Angeles middle schools. They conducted surveys at three points: during the spring of seventh grade, the fall of eighth grade and the spring ...
A blend of soy and dairy proteins promotes muscle protein synthesis when consumed after exercise
2013-01-25
ST. LOUIS, Jan. 24, 2013 – A new study published in The Journal of Nutrition demonstrates the benefits of consuming a protein blend for muscle protein synthesis after exercise. This study is a first-of-its-kind, conducted by researchers at the University of Texas Medical Branch, and utilizes the proteins from soy, whey and casein consumed after an acute bout of resistance exercise. These proteins have complementary amino acid profiles and different digestion rates (amino acid release profiles). The results demonstrate prolonged delivery of amino acids to muscles and ...
Genes provide clues to gender disparity in human hearts
2013-01-25
Healthy men and women show little difference in their hearts, except for small electrocardiographic disparities. But new genetic differences found by Washington University in St. Louis researchers in hearts with disease could ultimately lead to personalized treatment of various heart ailments.
Generally, men are more susceptible to developing atrial fibrillation, an irregular, rapid heartbeat that may lead to stroke, while women are more likely to develop long-QT syndrome, a rhythm disorder that can cause rapid heartbeats and sudden cardiac death.
While prior studies ...
Chance finding reveals new control on blood vessels in developing brain
2013-01-25
MADISON – Zhen Huang freely admits he was not interested in blood vessels four years ago when he was studying brain development in a fetal mouse.
Instead, he wanted to see how changing a particular gene in brain cells called glia would affect the growth of neurons.
The result was hemorrhage, caused by deteriorating veins and arteries, and it begged for explanation.
"It was a surprising finding," says Huang, an assistant professor of neuroscience and neurology at the University of Wisconsin-Madison. "I was mainly interested in the neurological aspect, how the brain ...