(Press-News.org) (Philadelphia, PA) – Scientists at the Center for Translational Medicine at the Temple University School of Medicine are inching closer to solving a long-standing mystery in sepsis, a complex and often life-threatening condition that affects more than 400,000 people in the U.S. every year. By blocking the activity of a protein, STIM1, in cells that line the insides of blood vessels in mice, they have halted a cascade of cellular events that culminates in the out-of-control inflammation that marks sepsis, and protected lungs from severe damage.
The findings, reported online January 25, 2013 in the Journal of Clinical Investigation, provide new insights into molecular details underlying sepsis and its effects on the lungs. In identifying STIM1 as a potential drug target, the results may lead to new treatment strategies against sepsis.
"While antibiotics are improving, more than 25 percent of those who develop sepsis will die from it. This is partly because we don't fully understand the mechanisms behind the widespread inflammation it causes," said senior author Muniswamy Madesh, PhD, Assistant Professor of Biochemistry at Temple University School of Medicine and a member of Temple's Center for Translational Medicine. "We've provided evidence indicating that without STIM1 driving calcium signaling, the exacerbation of inflammation can't occur. Our results could lead to a whole range of new therapeutic research directions."
STIM1 plays a variety of roles in the cells, including serving as a sensor for the amount of calcium inside a cell, and driving calcium signaling, which is important for cellular communication. In sepsis, a bacterial infection produces toxins that cause the body's normal reaction to infection to go haywire, prompting the immune system to attack the body's own organs and tissues.
According to Dr. Madesh, these toxins – small molecules called lipopolysaccharides – set off a chain of events. They initially bind to endothelial cell receptors, sending chemical signals that can result in "oxidative" damage to cells. STIM proteins can detect this cell damage, and drive the flow of calcium ions into the cell, increasing calcium signaling. The resulting fluctuations in calcium levels activate endothelial cells.
"When the endothelial cells are activated, they express various pro-inflammatory molecules, which facilitate white blood cells to adhere to endothelial cells and migrate from the blood to lung tissue," Dr. Madesh explained. "This cell migration further stimulates the immune system, increasing the release of other signaling molecules and factors. But how this occurs hasn't been completely understood."
Dr. Madesh and his colleagues wanted to better understand how STIM proteins were involved in lung inflammation and injury, which is commonly seen in sepsis. Such injury can lead to edema, or fluid, in the lungs, and possibly death. Their previous research had indicated that STIM1 played an important role in oxidative cell damage-altered calcium levels.
To find out, the researchers created mice lacking STIM1 in endothelial cells, and in a series of experiments, compared these mice to normal mice exposed to the sepsis toxin. They found that without STIM1 in the cells, the calcium fluctuations did not occur, and endothelial cells were protected against the toxin-induced lung injury.
The investigators also used a small molecule, BTP2, to see the effect on lung damage of physically blocking the STIM1 signaling pathway. "We found that the small molecule inhibitor blocked this calcium entry in the channel, as opposed to the other strategy in which the STIM1 gene was knocked out. Eliminating STIM1 or blocking the channel both reduced the permeability of the lungs' blood vessels and lessened lung edema. We can block this pathway using both genetic and pharmacological approaches, and both protected against endotoxin-induced lung inflammation," Dr. Madesh said.
"Although this STIM-mediated signaling pathway is essential for development and other functions, in the case of vascular inflammation, blocking the pathway protected that animal from the damage involved. While several other pathways have been established in the sepsis model, our finding is a new signaling pathway that could be targeted for therapeutic interventions."
Because BTP2 targets a specific calcium channel rather than the protein itself, Dr. Madesh said that one of his team's next goals is to "design new molecules that target the activation of the STIM protein." This same strategy could be used for other diseases or conditions, including stroke, that involve STIM-controlled calcium signaling, he noted.
INFORMATION:
Other investigators contributing to this research include: Rajesh Kumar Gandhirajan, Shu Meng, Harish C. Chandramoorthy, Karthik Mallilankaraman, Salvatore Mancarella, Hui Gao, Roshanak Razmpour, Xiao-Feng Yang, Steven R. Houser, Walter J. Koch, Hong Wang, Jonathan Soboloff, Donald L. Gill, Temple University School of Medicine; and Ju Chen, University of California, San Diego.
The research was supported by funding from the National Institutes of Health grants HL086699, 1S10RR027327-01, and 1R21HL109920-01.
About Temple Health
Temple Health refers to the health, education and research activities carried out by the affiliates of Temple University Health System and by Temple University School of Medicine.
Temple University Health System (TUHS) is a $1.4 billion academic health system dedicated to providing access to quality patient care and supporting excellence in medical education and research. The Health System consists of Temple University Hospital (TUH), ranked among the "Best Hospitals" in the region by U.S. News & World Report; TUH-Episcopal Campus; TUH-Northeastern Campus; Fox Chase Cancer Center, an NCI-designated comprehensive cancer center; Jeanes Hospital, a community-based hospital offering medical, surgical and emergency services; Temple Transport Team, a ground and air-ambulance company; and Temple Physicians, Inc., a network of community-based specialty and primary-care physician practices. TUHS is affiliated with Temple University School of Medicine.
Temple University School of Medicine (TUSM), established in 1901, is one of the nation's leading medical schools. Each year, the School of Medicine educates approximately 720 medical students and 140 graduate students. Based on its level of funding from the National Institutes of Health, Temple University School of Medicine is the second-highest ranked medical school in Philadelphia and the third-highest in the Commonwealth of Pennsylvania. According to U.S. News & World Report, TUSM is among the top 10 most applied-to medical schools in the nation.
END
In this issue of the Journal of Clinical Investigation, Karen Avraham and colleagues at Tel Aviv University identified a genetic mutation in two families with hereditary high frequency hearing loss. The mutated gene, which has not previously been linked to hearing loss, encodes NESP4, a protein that is expressed in the outer nuclear membrane (ONM) of the hair cells of the ear. Avraham and colleagues found that mutated NESP4 was mislocalized, disrupting a cellular complex known as the "linker of nucleoskeleton and cytoskeleton" or LINC, which maintains the position of the ...
Prostate cancer patients have increased levels of stress and anxiety; however, several recent studies have found that men who take drugs that interfere with the stress hormone adrenaline have a lower incidence of prostate cancer. In this issue of the Journal of Clinical Investigation George Kulik and colleagues at Wake Forest University examined the relationship between stress and cancer progression in a mouse model of prostate cancer. Kulik and colleagues found that mice that had been subjected to stress (exposed to the scent of a predator) exhibited a significantly reduced ...
Prostate cancer cells thrive on stress
Prostate cancer patients have increased levels of stress and anxiety; however, several recent studies have found that men who take drugs that interfere with the stress hormone adrenaline have a lower incidence of prostate cancer. In this issue of the Journal of Clinical Investigation George Kulik and colleagues at Wake Forest University examined the relationship between stress and cancer progression in a mouse model of prostate cancer. Kulik and colleagues found that mice that had been subjected to stress (exposed to the scent of ...
The bread and butter of investing for Silicon Valley tech companies is stale. Instead, a new method of predicting the evolution of technology could save tech giants millions in research and development or developments of new products—and help analysts and venture capitalists determine which companies are on the right track.
The high-tech industry has long used Moore's Law as a method to predict the growth of PC memory. Moore's Law states that the number of chips on a transistor doubles every 18 months (initially every year). A paper by Gareth James and Gerard Tellis, ...
Researchers at Hospital for Special Surgery have identified a potential new target for drugs to treat patients with rheumatoid arthritis (RA), a protein known as IRHOM2. The finding could provide an effective and potentially less toxic alternative therapy to tumor necrosis factor-alpha blockers (TNF-blockers), the mainstay of treatment for rheumatoid arthritis, and could help patients who do not respond to this treatment. Efforts to develop drugs that hone in on this new target are underway.
"This study is an elegant example of the capacity of basic science cell biologists ...
A study conducted at the University of Granada has demonstrated that men like female thinness more than women and they find female overweight more unpleasant than women. In addition, the study revealed that women who are not comfortable with their body perceive women with a "normal" body –i.e. women with a healthy weight– as a threat. Specifically, when these women see a "normal" body they experience feelings of displeasure and lack of control, since they feel they have not any control on their own body and cannot make it be as they want.
This research study was conducted ...
BOSTON – In recent years, it has been thought that select sets of genes might reveal cancer patients' prognoses. However, a study published last year examining breast cancer cases found that most of these "prognostic signatures" were no more accurate than random gene sets in determining cancer prognoses. While many saw this as a disappointment, investigators at Beth Israel Deaconess Medical Center (BIDMC), the Dana-Farber Cancer Institute, and the Institut de Recherches Cliniques de Montréal (IRCM) saw this as an opportunity to design a new method to identify gene sets ...
The research group led by Associate Professor Kenji Osafune and his colleague Shin-ichi Mae, both from Center for iPS Cell Research and Application (CiRA), Kyoto University in Japan, has succeeded in developing a highly efficient method of inducing human induced pluripotent stem (iPS) cells to differentiate into intermediate mesoderm, the precursor of kidney, gonad, and other cell lineages. This represents a major step toward realizing renal regeneration.
As nearly all kidney cells are derived through differentiation from intermediate mesoderm, to realize kidney regeneration ...
Population explosions of pine beetles, which have been decimating North American forests in recent decades, may be prevented by boosting competitor and predator beetle populations, a Dartmouth study suggests.
Bark beetles are the most destructive forest pests worldwide. Management and climate change have resulted in younger, denser forests that are even more susceptible to attack. Though intensively studied for decades, until now an understanding of bark beetle population dynamics—extreme ups and downs—has remained elusive.
The Dartmouth-led study, published in the ...
About ten percent of all cases of malignant melanoma are familial cases. The genome of affected families tells scientists a lot about how the disease develops. Prof. Dr. Rajiv Kumar of the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) together with Prof. Dr. Dirk Schadendorf from Essen University Hospital studied a family where 14 family members were affected by malignant melanoma.
The scientists analyzed the genomes of family members and found an identical mutation in the gene for telomerase, an enzyme often called 'immortality enzyme', in all ...