(Press-News.org) Philadelphia, Pa. – Autism spectrum disorders affect nearly 1 in 88 children, with symptoms ranging from mild personality traits to severe intellectual disability and seizures. Understanding the altered genetic pathways is critical for diagnosis and treatment. New work to examine which genes are responsible for autism disorders will be presented at the 57th Annual Meeting of the Biophysical Society (BPS), held Feb. 2-6, 2013, in Philadelphia, Pa.
"Autism is the most inheritable of neurodevelopmental disorders," explains Rajini Rao of Johns Hopkins University in Baltimore, Md., "but identifying the underlying genes is difficult since no single gene contributes more than a tiny fraction of autism cases." Rather, she continues, "mutations in many different genes variably affect a few common pathways."
A team of scientists at Johns Hopkins and Tel Aviv University in Israel looked at genetic variations in DNA sequence in the ion transporter NHE9 and found that autism-associated variants in NHE9 result in a profound loss of transporter function. "Altering levels of this transporter at the synapse may modulate critical proteins on the cell surface that bring in nutrients or neurotransmitters such as glutamate," says Rao. "Elevated glutamate levels are known to trigger seizures, possibly explaining why autistic patients with mutations in these ion transporters also have seizures."
A unique aspect of the team's approach was that they exploited decades of basic research done in bacteria and yeast to study a complex human neurological disorder. First, the group at Tel Aviv University, led by Nir Ben-Tal, built structural models of NHE9 using a bacterial relative as a template, allowing the Rao laboratory at Johns Hopkins to use the simple baker's yeast for screening the mutations. In the future, as genomic information becomes readily available for everyone, such easy, inexpensive, and rapid screening methods will be essential to evaluate rare genetic variants in autism and other disorders.
Rao and her team are optimistic about the potential benefits of their latest findings. "Although the research is still at an early stage, drugs that target the cellular pathways regulated by NHE9 could compensate for its loss of function and lead to potential therapy in the future," Rao says. "These findings add a new candidate for genetic screening of at-risk patients that may lead to better diagnosis or treatment of autism."
###
Presentation #118-Plat, "Functional evaluation of autism associated mutations in SLC9A9 (NHE9)," will take place at 9:15 a.m. on Sunday, Feb. 3, 2013, in the Pennsylvania Convention Center, Room 113C. ABSTRACT: http://tinyurl.com/apjmm7a
This news release was prepared for the Biophysical Society (BPS) by the American Institute of Physics (AIP).
ABOUT THE 2013 ANNUAL MEETING
Each year, the Biophysical Society Annual Meeting brings together over 6,000 research scientists in the multidisciplinary fields representing biophysics. With more than 3,900 poster presentations, over 200 exhibits, and more than 20 symposia, the Annual Meeting is the largest meeting of biophysicists in the world. Despite its size, the meeting retains its small-meeting flavor through its subgroup meetings, platform sessions, social activities, and committee programs.
The 57th Annual Meeting will be held at the Pennsylvania Convention Center (1101 Arch Street, Philadelphia, PA 19107). For maps and directions, please visit: http://www.paconvention.com/explore-philadelphia/directions-and-parking.
QUICK LINKS
Meeting Home Page:
http://www.biophysics.org/2013meeting/Main/tabid/3523/Default.aspx
Housing and Travel Information:
http://www.biophysics.org/2013meeting/AccommodationsTravel/HotelInformation/tabid/3621/Default.aspx
Program Abstracts and Itinerary Planner:
http://www.abstractsonline.com/plan/start.aspx?mkey=%7B763246BB-EBE4-430F-9545-81BC84D0C68C%7D
PRESS REGISTRATION
The Biophysical Society invites credentialed journalists, freelance reporters working on assignment, and public information officers to attend its Annual Meeting free of charge. For more information on registering as a member of the press, contact BPS Director of Public Affairs and Communications Ellen Weiss at eweiss@biophysics.org or 240-290-5606, or visit
http://www.biophysics.org/2013meeting/Registration/Press/tabid/3619/Default.aspx. Press registration will also be available onsite at the Pennsylvania Convention Center in the Biophysical Society's meeting office, Room 304VIP.
ABOUT BPS
The Biophysical Society (BPS), founded in 1958, is a professional scientific society established to encourage development and dissemination of knowledge in biophysics. The Society promotes growth in this expanding field through its annual meeting, monthly journal, and committee and outreach activities. Its 9000 members are located throughout the U.S. and the world, where they teach and conduct research in colleges, universities, laboratories, government agencies, and industry. For more information on the Society or the 2013 Annual Meeting, visit www.biophysics.org.
For more information, please contact:
Ellen R. Weiss
Director of Public Affairs and Communications
eweiss@biophysics.org
240-290-5606 END
Autism speaks through gene expression
2013-02-02
ELSE PRESS RELEASES FROM THIS DATE:
Group Therapy: New approach to psychosis treatment could target multiple nervous system receptors
2013-02-02
Philadelphia, Pa. – Antipsychotic drugs, used in the treatment of psychotic disorders involving severe delusions and hallucinations, have been studied for more than 70 years. Currently available antipsychotic drugs, however, only alleviate certain symptoms, with results that vary greatly from patient to patient and frequently cause significant side effects.
A new understanding of how the brain's G-protein receptors work may soon enable a way to better customize and target antipsychotic drugs to treat specific symptoms. Researchers from Virginia Commonwealth University ...
Imaging unveils temperature distribution inside living cells
2013-02-02
Philadelphia, Pa. – A research team in Japan exploring the functions of messenger ribonucleic acid (mRNA) – a molecule that encodes the chemical blueprint for protein synthesis – has discovered a way to take a close look at the temperature distribution inside living cells. This discovery may lead to a better understanding of diseases, such as cancer, which generate extraordinary intracellular heat.
This breakthrough is the first time anyone has been able to show the actual temperature distribution inside living cells. The team will present its findings at the 57th Annual ...
Listening to cells: Scientists probe human cells with high-frequency sound
2013-02-02
Philadelphia, Pa. – Sound waves are widely used in medical imaging, such as when doctors take an ultrasound of a developing fetus. Now scientists have developed a way to use sound to probe tissue on a much tinier scale. Researchers from the University of Bordeaux in France deployed high-frequency sound waves to test the stiffness and viscosity of the nuclei of individual human cells. The scientists predict that the probe could eventually help answer questions such as how cells adhere to medical implants and why healthy cells turn cancerous.
"We have developed a new non-contact, ...
The nanomechanical signature of breast cancer
2013-02-02
Philadelphia, Pa. – The texture of breast cancer tissue differs from that of healthy tissue. Using a cutting-edge tissue diagnostic device, a group of researchers in Basel, Switzerland, has determined one key difference: cancerous tissue is a mix of stiff and soft zones, whereas healthy tissue has uniform stiffness. This new finding may one day help improve breast cancer diagnosis and therapy by providing a unique nanomechanical signature of tumor tissue properties that indicates the potential for the cancer to spread. The team will present its work at the 57th Annual Meeting ...
Type II diabetes and the Alzheimer's connection
2013-02-02
Philadelphia, Pa. – A research team in Israel has devised a novel approach to identifying the molecular basis for designing a drug that might one day decrease the risk diabetes patients face of developing Alzheimer's disease. The team will present its work at the 57th Annual Meeting of the Biophysical Society (BPS), held Feb. 2-6, 2013, in Philadelphia, Pa.
A recent study suggests that people who suffer from type 2 diabetes face twice the risk of developing Alzheimer's disease later in life compared to those who do not have diabetes. The link these diseases share relates ...
Cooperators can coexist with cheaters, as long as there is room to grow
2013-02-02
Philadelphia, Pa. – Microbes exhibit bewildering diversity even in relatively tight living quarters. But when a population is a mix of cooperators, microbes that share resources, and cheaters, those that selfishly take yet give nothing back, the natural outcome is perpetual war. A new model by a team of researchers from Princeton University in New Jersey and Ben-Gurion University in Israel reveals that even with never-ending battles, the exploiter and the exploited can survive, but only if they have room to expand and grow. The researchers present their findings at the ...
Tracking the evolution of antibiotic resistance
2013-02-02
Philadelphia, Pa. – With the discovery of antibiotics, medicine acquired power on a scale never before possible to protect health, save lives, and reduce suffering caused by certain bacteria. But the power of antibiotics is now under siege because some virulent infections no longer respond to antibiotic drugs.
This antibiotic resistance is an urgent public health threat that a team of researchers from Sabanci University in Istanbul, Turkey, and Harvard Medical School and Harvard University in Cambridge, Mass., aim to stop. Their approach is based on an automated device ...
Propping open the door to the blood brain barrier
2013-02-02
Philadelphia, Pa. – The treatment of central nervous system (CNS) diseases can be particularly challenging because many of the therapeutic agents such as recombinant proteins and gene medicines are not easily transported across the blood-brain barrier (BBB). Focused ultrasound can be used to "open the door" of the blood brain barrier. However, finding a way to "prop the door open" to allow therapeutics to reach diseased tissue without damaging normal brain tissue is the focus of a new study by a team of researchers at the Institute of Biomedical Engineering at National ...
Quantum dots deliver Vitamin D to tumors for possible inflammatory breast cancer treatment
2013-02-02
Philadelphia, Pa. – The shortened daylight of a Maine winter may make for long, dark nights – but it has shone a light on a novel experimental approach to fighting inflammatory breast cancer (IBC), an especially deadly form of breast cancer.
The new approach enlists the active form of Vitamin D3, called calcitriol, which is delivered therapeutically by quantum dots. Quantum dots are an engineered light-emitting nanoscale delivery vehicle. This new preliminary work shows the dots can be used to rapidly move high concentrations of calcitriol to targeted tumor sites where ...
New methods for quantifying antisense drug delivery to target cells and tissues
2013-02-02
New Rochelle, NY, January 31, 2012—Powerful antisense drugs that target disease-associated genes to block their expression can be used to treat a broad range of diseases. Though antisense therapy has been proven effective, challenges remain in ensuring that the drugs reach their intended targets. Two new methods for detecting and measuring the levels of antisense drugs in cells that could accelerate the development of improved antisense drugs are described in an article in BioResearch Open Access, a bimonthly peer-reviewed open access journal from Mary Ann Liebert, Inc., ...