University of Virginia chemical engineers use gold to discover breakthrough for creating biorenewable chemicals
2010-10-21
(Press-News.org) October 19, 2010 — University of Virginia chemical engineers Robert J. Davis and Matthew Neurock have uncovered the key features that control the high reactivity of gold nanoparticles in a process that oxidizes alcohols in water. The research is an important first step in unlocking the potential of using metal catalysts for developing biorenewable chemicals.
The scientific discovery could one day serve as the foundation for creating a wide range of consumer products from biorenewable carbon feedstocks, as opposed to the petroleum-based chemicals currently being used as common building blocks for commodities such as cosmetics, plastics, pharmaceuticals and fuels.
The researchers' paper on the subject — "Reactivity of the Gold/Water Interface During Selective Oxidation Catalysis" [http://www.sciencemag.org/cgi/reprint/330/6000/74.pdf] — appears in the October issue of the journal Science.
The U.Va. researchers have shown that gold – the most inert of all metals – has high catalytic reactivity when placed in alkaline water. They studied the mechanism for oxidizing ethanol and glycerol into acids, such as acetic acid and glyceric acid, which are used in everything from food additives to glues, by using gold and platinum as catalysts.
"We've shown that by better understanding the oxidation chemistry on gold and other metal catalysts, we can begin to outline a path for developing a range of different reactions needed to transition from a petroleum-based chemical industry to one that uses biorenewable carbon feedstocks," said Davis, principal investigator on the research paper and professor and chair of the Department of Chemical Engineering in U.Va.'s School of Engineering and Applied Science.
By using water to help oxidize the alcohols with oxygen in the air as opposed to using expensive inorganic oxidants and harmful organic solvents, the growing field of biorenewable chemicals aims to offer a more sustainable, environmentally safe alternative to traditional petrochemical processes.
Until the completion of the U.Va. group's research, it wasn't fully understood how water can play an important role in the oxidation catalysis of alcohols. In the past, catalysis in water hasn't been a major issue for the chemical industry: Because petroleum and many petroleum products aren't water-soluble, water hasn't generally been considered to be a useful solvent.
The researchers, all from the Department of Chemical Engineering in U.Va.'s Engineering School, combined concepts in electrochemistry and catalysis to uncover the critical factors in the oxidation of alcohols to chemical intermediates.
###
The research also required merging experimental lab work led by Davis with Neurock's expertise in the theory of catalytic chemistry. Graduate students Bhushan N. Zope and David D. Hibbitts were essential members of the investigative teams.
END
ELSE PRESS RELEASES FROM THIS DATE:
2010-10-21
Washington, D.C. (October 19, 2010) -- Chinese researchers, reporting in the Journal of Applied Physics, published by the American Institute of Physics, have described a new breakthrough in understanding the way electrons travel around quantum dots. This might lead to promising new fabrication methods of novel quantum devices.
Guodong Li and colleagues at the National Center for Nanoscience and Technology in Beijing carried out an experiment using self-assembled quantum dots and a two-dimensional electron gas, and then fit the data to a model to find out the type of ...
2010-10-21
WASHINGTON, D.C., (Oct. 20, 2010) -- Just as landscape photographs shot in low-angle light dramatically accentuate subtle swales and mounds, depositing metal vapors at glancing angles turns a rough surface into amazing nanostructures with a vast range of potential properties.
For decades, vapor deposition has been a standard technique for creating modern microelectronic circuits. But nearly all of industry's efforts have been devoted to making structures as flat and smooth as possible. Rather than placing metal sources in the high-noon position used to make featureless ...
2010-10-21
WASHINGTON, D.C., (Oct. 20, 2010) -- A team of researchers in North Carolina has discovered that lubricin, a synovial fluid glycoprotein, reduces wear to bone cartilage. This result, which has implications for the treatment of sufferers of osteoarthritis, will be presented today at the AVS 57th International Symposium & Exhibition, taking place this week at the Albuquerque Convention Center in New Mexico.
Osteoarthritis is the most common form of arthritis, the degenerative joint disease. It mostly affects cartilage, the slippery tissue that covers the ends of bones ...
2010-10-21
WASHINGTON, D.C., (Oct. 20, 2010) -- The capture and storage of carbon dioxide in deep geologic formations, a strategy for minimizing the impacts of greenhouse gases on global warming, may currently be technologically feasible. But one key question that must be answered is the ability of subsurface materials to maintain their integrity in the presence of supercritical carbon dioxide -- a fluid state in which the gas is condensed at high temperature and pressure into a liquid.
A research team at the Pacific Northwest National Laboratory has developed tools in EMSL, a ...
2010-10-21
PROVIDENCE, R.I. [Brown University] — The JC polyomavirus doesn't strike very often, but it's a mean bug that preys on people with weakened immune systems, including people with AIDS, and almost always kills them. Now an international team of scientists at Brown University, the University of Tübingen in Germany, and Imperial College in London has found a potential Achilles Heel and painted a target on it: The virus must bind to a very specific sugar molecule dangling from the side of the brain cells it attacks.
Like the rebel forces in the 1977 classic movie Star Wars, ...
2010-10-21
The last two decades have seen tremendous progress in understanding the genetic basis of human brain disorders. Research developments in this area have revealed fundamental insights into the genes and molecular pathways that underlie neurological and psychiatric diseases. In a new series of review articles published by Cell Press in the October 21 issue of the journal Neuron, experts in the field discuss exciting recent advances in neurogenetics research and the potential implications for the treatment of these devastating disorders.
Genetic discoveries have transformed ...
2010-10-21
NEW YORK (Oct. 20, 2010) -- In a report published in the Oct. 20 issue of Science Translational Medicine, researchers at NewYork-Presbyterian Hospital/Weill Cornell Medical Center say animal and human data suggest gene therapy to the brain may be able to treat patients with major depression who do not respond to traditional drug treatment.
The researchers hope to rapidly translate their findings into a human clinical trial using the same kind of gene therapy modality the investigators have pioneered to treat Parkinson's disease. A 45-patient randomized blinded phase II ...
2010-10-21
(Boston) - Despite the promising results of the "Placement of Aortic Transcatheter Valves (PARTNER) trial," featured in the Oct. 21 issue of the New England Journal of Medicine, a cardiothoracic surgeon from Boston Medical Center (BMC) believes that surgical aortic-valve replacement should remain the standard treatment of aortic stenosis. In the accompanying editorial, the author argues that Transcatheter aortic-valve implantation (TAVI) should be reserved for patients at inordinately high risk who are not suitable candidates for surgery and who have decreased life expectancy. ...
2010-10-21
The evolution of complex life is strictly dependent on mitochondria, the tiny power stations found in all complex cells, according to a new study by Dr Nick Lane, from UCL (University College London), and Dr William Martin, from the University of Dusseldorf.
"The underlying principles are universal. Energy is vital, even in the realm of evolutionary inventions," said Dr Lane, UCL Department of Genetics, Evolution and Environment. "Even aliens will need mitochondria."
For 70 years scientists have reasoned that evolution of nucleus was the key to complex life. Now, in ...
2010-10-21
In a galaxy far away, an exceptionally massive black hole is traveling around a massive star in an unusually tight orbit. Also odd, the star is not as bright as it should be.
Astronomers have puzzled over this X-ray binary system, named M33 X-7, but no one could explain all of its features. Now a Northwestern University research team has.
The researchers have produced a model of the system's evolutionary history and formation that explains all of the system's observational characteristics: the tight orbit, the large masses of the star and black hole, the X-ray luminosity ...
LAST 30 PRESS RELEASES:
[Press-News.org] University of Virginia chemical engineers use gold to discover breakthrough for creating biorenewable chemicals