(Press-News.org) A team of researchers from Russia, Spain, Belgium, the U.K. and the U.S. Department of Energy's (DOE) Argonne National Laboratory announced findings last week that may represent a breakthrough in applications of superconductivity.
The team discovered a way to efficiently stabilize tiny magnetic vortices that interfere with superconductivity—a problem that has plagued scientists trying to engineer real-world applications for decades. The discovery could remove one of the most significant roadblocks to advances in superconductor technology.
Superconductors are extremely useful materials, given that modern society involves moving a lot of electricity around. Each time we do it, whether it be along the cord from the outlet to your lamp or in the millions of miles of power lines strung across the country, we lose a little bit of electricity. That effect is due to resistance in the wires we currently use to transport electricity. Even a pretty good conductor, like copper wire, loses some electricity due to resistance.
But in an ideal superconductor, no electricity is ever lost. If you set up a loop of perfect superconducting wire and added some current, it would circle that loop forever. Superconductors are the secret behind MRI machines, Maglev trains and improved cell phone reception.
The problem is that superconductors have to be cooled to do their thing. Even the "high-temperature" superconductors already discovered have to be chilled to -280° Fahrenheit. That creates a lot of engineering and logistical problems.
In the long run, scientists are hoping to develop superconducting materials that would operate closer to room temperature. That would be a major achievement—though it is generally still thought to be a long way off.
In the meantime, there remain key problems of superconductivity that need to be solved even in the low-temperature environment.
One such major problem is posed by magnetic fields. When magnetic fields reach a certain strength, they cause a superconductor to lose its superconductivity. But there is a type of superconductor—known as "Type II"—which is better at surviving in relatively high magnetic fields. In these superconductors, magnetic fields create tiny whirlpools or "vortices." Superconducting current continues to travel around these vortices to a point, but eventually, as the magnetic field strengthens, the vortices begin to move about and interfere with the material's superconductivity, introducing resistance.
"These vortices dissipate the energy when moving under applied currents and bury all hopes for a technological revolution—unless we find ways to efficiently pin them," said Argonne Distinguished Fellow Valerii Vinokur, who co-authored the study.
Scientists have spent a lot of time and effort over the past few decades trying to immobilize these vortices, but until now, the results have been mixed. They found ways to pin down the vortices, but these only worked in a restricted range of low temperatures and magnetic fields.
Vinokur and his colleagues, however, discovered a surprise. They began with very thin superconducting wires—just 50 nanometers in diameter. (A stack of 2,000 of these wires would equal the height of a sheet of paper.) These thin wires can accommodate only one row of vortices. When they applied a high magnetic field, the vortices crowded together in long clusters and stopped moving. Increasing the magnetic field restored the material's superconductivity, instead of destroying it.
Next, the team carved superconducting film into an array of holes so that only a few vortices could squeeze between the holes, where they stayed, unable to interfere with current.
The resistance of the superconductor dropped dramatically—at temperatures and magnetic fields where no one has been able to pin vortices before. "The results were quite striking," Vinokur said.
The team has only experimented with low-temperature superconductors so far, Vinokur said, "but there is no reason why the approach we used should be restricted to just low-temperature superconductors."
The paper, "Magnetic field-induced dissipation-free state in superconducting nanostructures," is published this week in Nature Communications. Vinokur and Tatyana Baturina, a visiting scientist at Argonne, authored the paper, along with researchers from the A.B. Rzhanov Institute of Semiconductor Physics in Russia, the Autonomous University of Madrid and the University of Zaragoza in Spain, the University of Bristol in the U.K. and the Interuniversity Microelectronics Centre in Belgium.
###
This work was supported by the DOE's Office of Science, the Spanish MICINN and MEC (Consolider Ingenio Molecular Nanoscience), the Comunidad de Madrid, the Aragon Regional Government, the Russian Academy of Sciences and the Russian Foundation for Basic Research.
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.
DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.
Resistance is futile
New findings could represent a breakthrough for applications of superconductivity
2013-02-13
ELSE PRESS RELEASES FROM THIS DATE:
Magnetic shielding of ion beam thruster walls
2013-02-13
Electric rocket engines known as Hall thrusters, which use a super high-velocity stream of ions to propel a spacecraft in space, have been used successfully onboard many missions for half a century. Erosion of the discharge channels walls, however, has limited their application to the inner solar system. A research team at Caltech's Jet Propulsion Laboratory, in Pasadena, Calif., has found a way to effectively control this erosion by shaping the engine's magnetic field in a way that shields the walls from ion bombardment.
Ions are produced in Hall thrusters when electrons ...
Long noncoding RNAs control development of fat cells
2013-02-13
CAMBRIDGE, Mass. (February 13, 2013) – Whitehead Institute researchers have identified a previously unrecognized layer of genetic regulation that is necessary for the generation of undesirable white fat cells. When this regulation is disrupted, white fat cells are unable to accumulate lipid droplets or mature from their precursors.
"We're trying to figure out what the mechanism is—what it takes to make fat cells," says Whitehead Founding Member Harvey Lodish, who is also a professor of biology and a professor of bioengineering at MIT. "The obvious reason we're interested ...
For some, deep brain stimulation brings lasting improvement in neuropathic pain
2013-02-13
Philadelphia, Pa. (February 13, 2013) – For many patients with difficult-to-treat neuropathic pain, deep brain stimulation (DBS) can lead to long-term improvement in pain scores and other outcomes, according to a study in the February issue of Neurosurgery, official journal of the Congress of Neurological Surgeons. The journal is published by Lippincott Williams & Wilkins, a part of Wolters Kluwer Health.
About two-thirds of eligible patients who undergo DBS achieve significant and lasting benefits in terms of pain, quality of life, and overall health, according to the ...
Busy beavers give Canada geese a lift, study shows
2013-02-13
A new University of Alberta study shows that busy beavers are helping Canada geese get an earlier start when the birds fly home and begin spring nesting.
Ponds in Alberta where beavers were active tended to result in earlier thaw of winter snowpack, giving the geese a better chance at reproductive success, according to the study, published recently in Mammalian Biology.
The study is the first to link beavers to early season nesting habits of Canada geese in a Northern climate.
A team led by Glynnis Hood, an associate professor in the Department of Science at the ...
'Masked' mold toxins in food should be included in safety regulations
2013-02-13
Government limits on mold toxins present naturally in grain crops should be expanded to include so-called "masked mycotoxins" that change from harmless to potentially harmful forms in the body, a new study concludes. It appears in ACS' journal Chemical Research in Toxicology.
Chiara Dall'Asta and colleagues explain that molds growing naturally on wheat, corn and other plants produce toxic substances termed mycotoxins. Some health experts regard mycotoxins as the most serious chronic dietary risk factor, greater than the potential health threats from pesticides and insecticides. ...
Origami meets chemistry in scholarly video-article
2013-02-13
February 13, 2013
Cambridge, MA: The nanotechnology research space is rapidly growing, with vast implications for the healthcare, consumer electronics, surveillance, and defense industries. However, a major limitation to this research is the ability to create particles that vary in shape and function on a micrometer or nanometer scale.
To overcome these limitations, chemical engineers at Johns Hopkins University have developed self-assembling particles that are inspired by origami, the traditional Japanese art of folding paper into complex three-dimensional shapes. ...
A cooler way to protect silicon surfaces
2013-02-13
CAMBRIDGE, MA -- Silicon, the material of high-tech devices from computer chips to solar cells, requires a surface coating before use in these applications. The coating "passivates" the material, tying up loose atomic bonds to prevent oxidation that would ruin its electrical properties. But this passivation process consumes a lot of heat and energy, making it costly and limiting the kinds of materials that can be added to the devices.
Now a team of MIT researchers has found a way to passivate silicon at room temperature, which could be a significant boon to solar-cell ...
Protein central to cancer stem cell formation provides new potential target
2013-02-13
HOUSTON - Researchers have identified a pivotal protein in a cellular transformation that makes a cancer cell more resistant to treatment and more capable of growing and spreading, making it an inviting new target for drug development.
Additionally, the international team led by scientists at The University of Texas MD Anderson Cancer Center found the cancer drug sunitinib potentially has a new role in treating triple-negative, claudin-low breast cancer, a particularly resistant version of a type of cancer that is already difficult to treat.
"We found that FOXC2 lies ...
NASA's Chandra suggests rare explosion created our galaxy's youngest black hole
2013-02-13
New data from NASA's Chandra X-ray Observatory suggest a highly distorted supernova remnant may contain the most recent black hole formed in the Milky Way galaxy. The remnant appears to be the product of a rare explosion in which matter is ejected at high speeds along the poles of a rotating star.
The remnant, called W49B, is about a thousand years old as seen from Earth and located about 26,000 light-years away.
"W49B is the first of its kind to be discovered in the galaxy," said Laura Lopez, who led the study at the Massachusetts Institute of Technology. "It appears ...
By guessing, clinicians may miss 3/4 of alcohol problems
2013-02-13
SAN ANTONIO, Texas (Feb. 13, 2013) — By relying on hunches rather than posing a few screening questions, primary care clinicians may be missing three-fourths of the alcohol problems in their patients, a newly released analysis shows.
"It's often off the radar — people come in for hypertension and are not asked how much they drink," said study co-author Barbara J. Turner, M.D., M.S.Ed., M.A., M.A.C.P., of UT Medicine San Antonio. Primary care offices typically don't have good systems to administer questionnaires to screen for certain problems, including alcohol consumption, ...
LAST 30 PRESS RELEASES:
Exercise as an anti-ageing intervention to avoid detrimental impact of mental fatigue
UMass Amherst Nursing Professor Emerita honored as ‘Living Legend’
New guidelines aim to improve cystic fibrosis screening
Picky eaters by day, buffet by night: Butterfly, moth diets sync to plant aromas
Pennington Biomedical’s Dr. Leanne Redman honored with the E. V. McCollum Award from the American Society for Nutrition
CCNY physicists uncover electronic interactions mediated via spin waves
Researchers’ 3D-printing formula may transform future of foam
Nurture more important than nature for robotic hand
Drug-delivering aptamers target leukemia stem cells for one-two knockout punch
New study finds that over 95% of sponsored influencer posts on Twitter were not disclosed
New sea grant report helps great lakes fish farmers navigate aquaculture regulations
Strain “trick” improves perovskite solar cells’ efficiency
How GPS helps older drivers stay on the roads
Estrogen and progesterone stimulate the body to make opioids
Dancing with the cells – how acoustically levitating a diamond led to a breakthrough in biotech automation
Machine learning helps construct an evolutionary timeline of bacteria
Cellular regulator of mRNA vaccine revealed... offering new therapeutic options
Animal behavioral diversity at risk in the face of declining biodiversity
Finding their way: GPS ignites independence in older adult drivers
Antibiotic resistance among key bacterial species plateaus over time
‘Some insects are declining but what’s happening to the other 99%?’
Powerful new software platform could reshape biomedical research by making data analysis more accessible
Revealing capillaries and cells in living organs with ultrasound
American College of Physicians awards $260,000 in grants to address equity challenges in obesity care
Researchers from MARE ULisboa discover that the European catfish, an invasive species in Portugal, has a prolonged breeding season, enhancing its invasive potential
Rakesh K. Jain, PhD, FAACR, honored with the 2025 AACR Award for Lifetime Achievement in Cancer Research
Solar cells made of moon dust could power future space exploration
Deporting immigrants may further shrink the health care workforce
Border region emergency medical services in migrant emergency care
Resident physician intentions regarding unionization
[Press-News.org] Resistance is futileNew findings could represent a breakthrough for applications of superconductivity