PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Opposites attract: How cells and cell fragments move in electric fields

2013-03-28
(Press-News.org) VIDEO: These fish cells crawl towards the negative electrode, or cathode, and change direction when the electric field is reversed. Electric fields may recruit or guide cells into wounded tissue.
Click here for more information.

Like tiny crawling compass needles, whole living cells and cell fragments orient and move in response to electric fields — but in opposite directions, scientists at the University of California, Davis, have found. Their results, published April 8 in the journal Current Biology, could ultimately lead to new ways to heal wounds and deliver stem cell therapies.

When cells crawl into wounded flesh to heal it, they follow an electric field. In healthy tissue there's a flux of charged particles between layers. Damage to tissue sets up a "short circuit," changing the flux direction and creating an electrical field that leads cells into the wound. But exactly how and why does this happen? That's unclear.

"We know that cells can respond to a weak electrical field, but we don't know how they sense it," said Min Zhao, professor of dermatology and ophthalmology and a researcher at UC Davis's stem cell center, the Institute for Regenerative Cures. "If we can understand the process better, we can make wound healing and tissue regeneration more effective."

The researchers worked with cells that form fish scales, called keratocytes. These fish cells are commonly used to study cell motion and they also readily shed cell fragments, wrapped in a cell membrane but lacking a nucleus, major organelles, DNA or much else in the way of other structures.

In a surprise discovery, whole cells and cell fragments moved in opposite directions in the same electric field, said Alex Mogilner, professor of mathematics and of neurobiology, physiology and behavior at UC Davis and co-senior author on the paper.

VIDEO: Both whole cells and cell fragments that break off move in an electric field, but in opposite directions. Electric fields may guide cells into wounded tissue to speed repair.
Click here for more information.

It's the first time that such basic cell fragments have been shown to orient and move in an electric field, Mogilner said. That allowed the researchers to discover that the cells and cell fragments are oriented by a "tug of war" between two competing processes.

Think of a cell as a blob of fluid and protein gel wrapped in a membrane. Cells crawl along surfaces by sliding and ratcheting protein fibers inside the cell past each other, advancing the leading edge of the cell while withdrawing the trailing edge.

Assistant project scientist Yaohui Sun found that when whole cells were exposed to an electric field, actin protein fibers collected and grew on the side of the cell facing the negative electrode (cathode) while a mix of contracting actin and myosin fibers formed toward the positive electrode (anode). Both actin alone, and actin with myosin, can create motors that drive the cell forward.

The polarizing effect set up a tug-of-war between the two mechanisms. In whole cells, the actin mechanism won and the cell crawled toward the cathode. But in cell fragments, the actin/myosin motor came out on top, got the rear of the cell oriented toward cathode and the cell fragment crawled in the opposite direction.

The results show that there are at least two distinct pathways through which cells respond to electric fields, Mogilner said. At least one of the pathways — leading to organized actin/myosin fibers — can work without a cell nucleus or any of the other organelles found in cells, beyond the cell membrane and proteins that make up the cytoskeleton.

Upstream of those two pathways is some kind of sensor that detects the electric field. In a separate paper to be published in the same journal issue, Mogilner and Stanford University researchers Greg Allen and Julie Theriot narrow down the possible mechanisms. The most likely explanation, they conclude, is that the electric field causes certain electrically charged proteins in the cell membrane to concentrate at the membrane edge, triggering a response.

### The team also included Hao Do, Jing Gao and Ren Zhao, all at the Institute for Regenerative Cures and the UC Davis departments of Ophthalmology and Dermatology. Sun is co-advised by Mogilner and Zhao; Gao is now working at Yunnan Normal University, Kunming, China, and Ren Zhao is at the Third Military Medical University, Chongqing, China.

The work was funded by the National Institutes of Health, the California Institute for Regenerative Medicine and the National Science Foundation.

Media contact(s):

Alex Mogilner
Mathematics
530-554-9395
mogilner@math.ucdavis.edu Min Zhao
Institute for Regenerative Cures
916-703-9381
minzhao@ucdavis.edu Charles Casey
UC Davis Health System Public Affairs
916-734-9048
charles.casey@ucdmc.ucdavis.edu Andy Fell
UC Davis News Service
530-752-4533
ahfell@ucdavis.edu END


ELSE PRESS RELEASES FROM THIS DATE:

UMMS scientists tie dietary influences to changes in gene expression and physiology

2013-03-28
WORCESTER, MA – Sometimes you just can't resist a tiny piece of chocolate cake. Even the most health-conscious eaters find themselves indulging in junk foods from time to time. New research by scientists at the University of Massachusetts Medical School (UMMS) raises the striking possibility that even small amounts of these occasional indulgences may produce significant changes in gene expression that could negatively impact physiology and health. A pair of papers published in Cell by A.J. Marian Walhout, PhD, co-director of the Program in Systems Biology and professor ...

Hubble observes the hidden depths of Messier 77

2013-03-28
Messier 77 is a galaxy in the constellation of Cetus, some 45 million light-years away from us. Also known as NGC 1068, it is one of the most famous and well-studied galaxies. It is a real star among galaxies, with more papers written about it than many other galaxies put together! Despite its current fame and striking swirling appearance, the galaxy has been a victim of mistaken identity a couple of times; when it was initially discovered in 1780, the distinction between gas clouds and galaxies was not known, causing finder Pierre Mechain to miss its true nature and ...

Study reveals how diabetes drug delays ageing in worms

2013-03-28
A widely prescribed type 2 diabetes drug slows down the ageing process by mimicking the effects of dieting, according to a study published today using worms to investigate how the drug works. Following a calorie-restricted diet has been shown to improve health in later life and extend lifespan in a number of animals, ranging from the simple worm to rhesus monkeys. The type 2 diabetes drug metformin has been found to have similar effects in animals but until now it was not clear exactly how the drug delays the ageing process. Researchers supported by the Wellcome Trust ...

What attracts people to violent movies?

2013-03-28
Washington, DC (March 26, 2013) – Why are audiences attracted to bloodshed, gore and violence? A recent study from researchers at the University of Augsburg, Germany and the University of Wisconsin-Madison found that people are more likely to watch movies with gory scenes of violence if they felt there was meaning in confronting violent aspects of real life. Anne Bartsch, University of Augsburg, Germany and Louise Mares, University of Wisconsin-Madison, will present their findings at the 63rd Annual Conference of the International Communication Association. Their study ...

A social network for young Londoners on the buses

2013-03-28
Free bus travel has improved the social lives and independence of 12-18 year olds in London, according to research published today in the journal Mobilities. Researchers from the London School of Hygiene & Tropical Medicine and UCL (University College London) found that free bus travel – which all young Londoners are entitled to by registering for a Zip Oyster Card – increased young people's ability to travel independently and extended their opportunities through facilitating extra trips, trips further afield and/or exploratory trips with friends. Travelling together ...

Should I trust my intuition?

2013-03-28
A study led by Zachary Mainen, Director of the Champalimaud Neuroscience Programme, and published today (March 28th) in the scientific journal, Neuron, reports that when rats were challenged with a series of perceptual decision problems, their performance was just as good when they decided rapidly as when they took a much longer time to respond. Despite being encouraged to slow down and try harder, the subjects of this study achieved their maximum performance in less than 300 milliseconds. 'There are many kinds of decisions, and for some, having more time appears to be ...

Protective prion keeps yeast cells from going it alone

2013-03-28
CAMBRIDGE, Mass. (March 28, 2013) – Most commonly associated with such maladies as "mad cow disease" and Creutzfeldt-Jakob disease, prions are increasingly recognized for their ability to induce potentially beneficial traits in a variety of organisms, yeast chief among them. Now a team of scientists has added markedly to the job description of prions as agents of change, identifying a prion capable of triggering a transition in yeast from its conventional single-celled form to a cooperative, multicellular structure. This change, which appears to improve yeast's chances ...

Scientists propose revolutionary laser system to produce the next LHC

2013-03-28
An international team of physicists has proposed a revolutionary laser system, inspired by the telecommunications technology, to produce the next generation of particle accelerators, such as the Large Hadron Collider (LHC). The International Coherent Amplification Network (ICAN) sets out a new laser system composed of massive arrays of thousands of fibre lasers, for both fundamental research at laboratories such as CERN and more applied tasks such as proton therapy and nuclear transmutation. The results of this study are published today in Nature Photonics. Lasers ...

Scientists identify brain's 'molecular memory switch'

2013-03-28
Scientists have identified a key molecule responsible for triggering the chemical processes in our brain linked to our formation of memories. The findings, published in the journal Frontiers in Neural Circuits, reveal a new target for therapeutic interventions to reverse the devastating effects of memory loss. The BBSRC-funded research, led by scientists at the University of Bristol, aimed to better understand the mechanisms that enable us to form memories by studying the molecular changes in the hippocampus — the part of the brain involved in learning. Previous ...

Declaring a truce with our microbiological frienemies

2013-03-28
Managing bacteria and other microorganisms in the body, rather than just fighting them, may be lead to better health and a stronger immune system, according to a Penn State biologist. Researchers have historically focused on microbes in the body as primarily pathogens that must be fought, said Eric Harvill, professor of microbiology and infectious disease. However, he said that recent evidence of the complex interaction of the body with microbes suggests a new interpretation of the relationship. "Now we are beginning to understand that the immune system interacts with ...

LAST 30 PRESS RELEASES:

Cal Poly’s fifth Climate Solutions Now conference to take place Feb. 23-27

Mask-wearing during COVID-19 linked to reduced air pollution–triggered heart attack risk in Japan

Achieving cross-coupling reactions of fatty amide reduction radicals via iridium-photorelay catalysis and other strategies

Shorter may be sweeter: Study finds 15-second health ads can curb junk food cravings

Family relationships identified in Stone Age graves on Gotland

Effectiveness of exercise to ease osteoarthritis symptoms likely minimal and transient

Cost of copper must rise double to meet basic copper needs

A gel for wounds that won’t heal

Iron, carbon, and the art of toxic cleanup

Organic soil amendments work together to help sandy soils hold water longer, study finds

Hidden carbon in mangrove soils may play a larger role in climate regulation than previously thought

Weight-loss wonder pills prompt scrutiny of key ingredient

Nonprofit leader Diane Dodge to receive 2026 Penn Nursing Renfield Foundation Award for Global Women’s Health

Maternal smoking during pregnancy may be linked to higher blood pressure in children, NIH study finds

New Lund model aims to shorten the path to life-saving cell and gene therapies

Researchers create ultra-stretchable, liquid-repellent materials via laser ablation

Combining AI with OCT shows potential for detecting lipid-rich plaques in coronary arteries

SeaCast revolutionizes Mediterranean Sea forecasting with AI-powered speed and accuracy

JMIR Publications’ JMIR Bioinformatics and Biotechnology invites submissions on Bridging Data, AI, and Innovation to Transform Health

Honey bees navigate more precisely than previously thought

Air pollution may directly contribute to Alzheimer’s disease

Study finds early imaging after pediatric UTIs may do more harm than good

UC San Diego Health joins national research for maternal-fetal care

New biomarker predicts chemotherapy response in triple-negative breast cancer

Treatment algorithms featured in Brain Trauma Foundation’s update of guidelines for care of patients with penetrating traumatic brain injury

Over 40% of musicians experience tinnitus; hearing loss and hyperacusis also significantly elevated

Artificial intelligence predicts colorectal cancer risk in ulcerative colitis patients

Mayo Clinic installs first magnetic nanoparticle hyperthermia system for cancer research in the US

Calibr-Skaggs and Kainomyx launch collaboration to pioneer novel malaria treatments

JAX-NYSCF Collaborative and GSK announce collaboration to advance translational models for neurodegenerative disease research

[Press-News.org] Opposites attract: How cells and cell fragments move in electric fields