(Press-News.org) NARRAGANSETT, R.I. – April 15, 2013 – A debate among scientists about the geologic formation of the supervolcano encompassing the region around Yellowstone National Park has taken a major step forward, thanks to new evidence provided by a team of international researchers led by University of Rhode Island Professor Christopher Kincaid.
In a publication appearing in last week's edition of Nature Geoscience, the URI team demonstrated that both sides of the debate may be right.
Using a state-of-the-art plate tectonic laboratory model, they showed that volcanism in the Yellowstone area was caused by severely deformed and defunct pieces of a former mantle plume. They further concluded that the plume was affected by circulation currents driven by the movement of tectonic plates at the Cascades subduction zone.
Mantle plumes are hot buoyant upwellings of magma inside the Earth. Subduction zones are regions where dense oceanic tectonic plates dive beneath buoyant continental plates. The origins of the Yellowstone supervolcano have been argued for years, with sides disagreeing about the role of mantle plumes.
According to Kincaid, the simple view of mantle plumes is that they have a head and a tail, where the head rises to the surface, producing immense magma structures and the trailing tail interacts with the drifting surface plates to create a chain of smaller volcanoes of progressively younger age. But Yellowstone doesn't fit this typical mold. Among its oddities, its eastward trail of smaller volcanoes called the Snake River Plain has a mirror-image volcanic chain, the High Lava Plain, that extends to the west. As a result, detractors say the two opposite trails of volcanoes and the curious north-south offset prove the plume model simply cannot work for this area, and that a plates-only model must be at work.
To examine these competing hypotheses, Kincaid, former graduate student Kelsey Druken, and colleagues at the Australian National University built a laboratory model of the Earth's interior using corn syrup to simulate fluid-like motion of Earth's mantle. The corn syrup has properties that allow researchers to examine complex time changing, three-dimensional motions caused by the collisions of tectonic plates at subduction zones and their effect on unsuspecting buoyant plumes.
By using the model to simulate a mantle plume in the Yellowstone region, the researchers found that it reproduced the characteristically odd patterns in volcanism that are recorded in the rocks of the Pacific Northwest.
"Our model shows that a simple view of mantle plumes is not appropriate when they rise near subduction zones, and that these features get ripped apart in a way that seems to match the patterns in magma output in the northwestern U.S. over the past 20 million years," said Kincaid, a professor of geological oceanography at the URI Graduate School of Oceanography. "The sinking plate produces a flow field that dominates the interaction with the plume, making the plume passive in many ways and trapping much of the magma producing energy well below the surface. What you see at the surface doesn't look like what you'd expect from the simple models."
The next step in Kincaid's research is to conduct a similar analysis of the geologic formations in the region around the Tonga subduction zone and the Samoan Islands in the South Pacific, another area where some scientists dispute the role of mantle plumes.
According to Kincaid, "A goal of geological oceanography is to understand the relationship between Earth's convecting interior and our oceans over the entire spectrum of geologic time. This feeds directly into the very pressing need for understanding where Earth's ocean-climate system is headed, which clearly hinges on our understanding of how it has worked in past."
### END
Research aims to settle debate over origin of Yellowstone volcano
2013-04-15
ELSE PRESS RELEASES FROM THIS DATE:
Mass. General team develops implantable, bioengineered rat kidney
2013-04-15
Bioengineered rat kidneys developed by Massachusetts General Hospital (MGH) investigators successfully produced urine both in a laboratory apparatus and after being transplanted into living animals. In their report, receiving advance online publication in Nature Medicine, the research team describes building functional replacement kidneys on the structure of donor organs from which living cells had been stripped, an approach previously used to create bioartificial hearts, lungs and livers.
"What is unique about this approach is that the native organ's architecture is ...
New insight into accelerating summer ice melt on the Antarctic Peninsula
2013-04-15
A new 1000-year Antarctic Peninsula climate reconstruction shows that summer ice melting has intensified almost ten-fold, and mostly since the mid 20th Century. Summer ice melt affects the stability of Antarctic ice shelves and glaciers.
The research, published this week in the journal Nature Geoscience, adds new knowledge to the international effort that is required to understand the causes of environmental change in Antarctica and to make more accurate projections about the direct and indirect contribution of Antarctica's ice shelves and glaciers to global sea level ...
Nanosponges soak up toxins released by bacterial infections and venom
2013-04-15
Engineers at the University of California, San Diego have invented a "nanosponge" capable of safely removing a broad class of dangerous toxins from the bloodstream – including toxins produced by MRSA, E. coli, poisonous snakes and bees. These nanosponges, which thus far have been studied in mice, can neutralize "pore-forming toxins," which destroy cells by poking holes in their cell membranes. Unlike other anti-toxin platforms that need to be custom synthesized for individual toxin type, the nanosponges can absorb different pore-forming toxins regardless of their molecular ...
Cutting specific pollutants would slow sea level rise
2013-04-15
BOULDER – With coastal areas bracing for rising sea levels, new research indicates that cutting emissions of certain pollutants can greatly slow down sea level rise this century.
The research team found that reductions in four pollutants that cycle comparatively quickly through the atmosphere could temporarily forestall the rate of sea level rise by roughly 25 to 50 percent.
"To avoid potentially dangerous sea level rise, we could cut emissions of short-lived pollutants even if we cannot immediately cut carbon dioxide emissions," says Aixue Hu of the National Center ...
Mount Sinai study identifies new gene variations associated with heart rate
2013-04-15
(New York, NY – April 14, 2013) – Through a collaborative genome-wide study on individuals, researchers have discovered 14 new genetic variations that are associated with heart rate. Since heart rate is a marker of cardiovascular health, these findings could provide a better understanding of genetic regulation of heart beat and is a first step towards identifying targets for new drugs to treat cardiovascular disease.
The study, titled, "Identification of Heart Rate-Associated Loci and Their Effects on Cardiac Conduction and Rhythm Disorders," was published online this ...
Recent climate, glacier changes in Antarctica at the 'upper bound' of normal
2013-04-15
In the last few decades, glaciers at the edge of the icy continent of Antarctica have been thinning, and research has shown the rate of thinning has accelerated and contributed significantly to sea level rise.
New ice core research suggests that, while the changes are dramatic, they cannot be attributed with confidence to human-caused global warming, said Eric Steig, a University of Washington professor of Earth and space sciences.
Previous work by Steig has shown that rapid thinning of Antarctic glaciers was accompanied by rapid warming and changes in atmospheric ...
Bacterial security agents go rogue
2013-04-15
CRISPR, a system of genes that bacteria use to defend themselves against viruses, has been found to be involved in helping some bacteria evade the mammalian immune system.
The results are scheduled for publication Sunday, April 14 in Nature.
CRISPR is itself a sort of immune system for bacteria. Its function was discovered by dairy industry researchers seeking to prevent phages, the viruses that infect bacteria, from ruining the cultures used to make cheese and yogurt. Bacteria incorporate small bits of DNA from phages into their CRISPR region and use that information ...
Gene sequencing project finds new mutations to blame for a majority of brain tumor subtype
2013-04-15
The St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project has identified mutations responsible for more than half of a subtype of childhood brain tumor that takes a high toll on patients. Researchers also found evidence the tumors are susceptible to drugs already in development.
The study focused on a family of brain tumors known as low-grade gliomas (LGGs). These slow-growing cancers are found in about 700 children annually in the U.S., making them the most common childhood tumors of the brain and spinal cord. For patients whose ...
The tulip tree reveals mitochondrial genome of ancestral flowering plant
2013-04-15
The extraordinary level of conservation of the tulip tree (Liriodendron tulipifera) mitochondrial genome has redefined our interpretation of evolution of the angiosperms (flowering plants), finds research in biomed Central's open access journal BMC Biology. This beautiful 'molecular fossil' has a remarkably slow mutation rate meaning that its mitochondrial genome has remained largely unchanged since the dinosaurs were roaming the earth.
Evolutionary studies make used of mitochondrial (powerhouse) genomes to identify maternal lineages, for example the human mitochondrial ...
Ordinary skin cells morphed into functional brain cells
2013-04-15
Researchers at Case Western Reserve School of Medicine have discovered a technique that directly converts skin cells to the type of brain cells destroyed in patients with multiple sclerosis, cerebral palsy and other so-called myelin disorders.
This discovery appears today in the journal Nature Biotechnology.
This breakthrough now enables "on demand" production of myelinating cells, which provide a vital sheath of insulation that protects neurons and enables the delivery of brain impulses to the rest of the body. In patients with multiple sclerosis (MS), cerebral palsy ...