PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Forces for cancer spread: Genomic instability and evolutionary selection

Pancreatic cancer genomes show remarkable mutation effects

2010-10-28
(Press-News.org) In new research published today, researchers uncover evolution in action in cancer cells. They show the forces of evolution in pancreatic tumours mean that not only is cancer genetically different between different patients, but each new focus of cancer spread within a patient has acquired distinct mutations.

Effectively, ten different foci of cancer spread are ten different, but related, tumours. The complexity of pancreatic cancer genetics uncovered in this work helps to explain the difficulty of treating the disease but also strengthens the need for improved methods for early diagnosis

Pancreatic cancer is an aggressive malignancy with only two or three patients in one hundred living beyond five years from first diagnosis. The spread – metastasis – of the tumour is thought to be relatively symptomless in most patients until the disease is advanced.

"We have always known that pancreatic cancer is a particularly aggressive disease," says Dr Peter Campbell, from the Wellcome Trust Sanger Institute and first author on the paper. "This study illustrates why it is so challenging. Each metastasis is its own tumour, each evolving, each striving for dominance, each adapting to life outside the pancreas. When we treat cancer that has spread through the body, we're not just treating one tumour, we might be treating tens of genetically distinct tumours."

The researchers, from the Wellcome Trust Sanger Institute, near Cambridge, UK and the Sol Goldman Pancreatic Cancer Research Center at Johns Hopkins Medical Institutions, Baltimore, USA, looked at cancers in 13 patients who died from pancreatic cancer. They mapped rearrangements in the genomes of cancer samples: in some cases, they looked at several metastases from a patient.

They discovered that pancreatic cancer genomes often contain a distinctive pattern of genome rearrangement that possibly reflects changes to repair mechanisms in the cancer cells. The pattern of mutation events is dramatically different to that found in breast cancer, for example.

"With each study, cancer genomes are being revealed in their intricate complex detail," says Dr Andy Futreal, Head of Cancer Genetics and Genomics at the Wellcome Trust Sanger Institute and a senior author on the paper. "Genome instability is common in cancer, but this study has further revealed the dynamic nature of that instability and its role in spread of disease in the patient – with instability being an engine of selection that allows the tumour to adapt to new sites in the body.

"We can see a root of common lesions – about half of the mutations are shared across metastases. Metastatic cancer is therefore like a family: the different deposits of tumour are genetically related to one another, as brothers, sisters and cousins are, but also have distinguishing genetic features that make them individual. Identifying and targeting the shared mutations with drugs is likely to be a route to more effective treatment."

In a companion study Dr Iacobuzio-Donahue and her colleagues show that single-letter mutations show a similarly complex pattern. The team on that paper suggest that there might be a long time lag from the first cancer-causing mutations in the primary tumour to the violent and rapid metastasis of late-stage disease.

Both papers suggest that the galloping mutation rate that develops produces cells that, because of specific mutations they acquire, can colonize other organs. Different combinations of active genes are needed to survive in different tissues. This is a return to the 120-year-old seed and soil hypothesis that some organs provide particularly fertile ground for particular cancer cells to grow. This work shows that even in one person's cancer, clones of cells can evolve genomes specialised for life in defined organs.

The researchers emphasize that the shared mutations common to many early-stage pancreatic cancers could provide a route to discovery of new drug targets. In addition, the long time between the initial genetic changes in the developing primary cancer and spread to other organs might offer a window in which early diagnosis could detect disease while it is still curable by surgery.

The patients for these studies were recruited to a programme established by Dr Iacobuzio-Donahue in Baltimore to develop new understanding of this difficult tumour type. Patients with terminal pancreatic cancer discuss with the team the aims of the research and choose whether or not to provide samples after their death.

"We are so grateful to all patients who have discussed this programme," explains Dr Iacobuzio-Donahue from the Sol Goldman Pancreatic Cancer Research Center at Johns Hopkins Medical Institutions, Baltimore, Maryland and a senior author on the paper. "In times of tremendous personal difficulty, they and their families and friends have taken steps to help others, with the hope we can improve diagnosis and treatments in the future. The sacrifices they have made are now fundamentally improving our understanding of how pancreatic cancer develops and spreads.

"This is a research paper, but we are all of us aware that there are real people behind these samples."

###

Notes to Editors

Publication Details
Campbell PJ, Yachida S et al. (2010) The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature
Published online on 28.10.10 prior to print production
DOI: 10.1038/nature09460

The other publication referred to in this release is:
Yachida S et al. (2010) Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature
Published online on 28.10.10 prior to print production

Funding
This work was supported by the Wellcome Trust, the Skip Viragh Foundation, the Michael Rolphe Foundation, the National Institutes of Health, The International Human Frontier Science Program Organization and the Uehara Memorial Foundation.

Participating Centres Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK Department of Haematology, University of Cambridge, Cambridge, UK Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland Institute for Cancer Research, Sutton, Surrey, UK

The Wellcome Trust Sanger Institute, which receives the majority of its funding from the Wellcome Trust, was founded in 1992. The Institute is responsible for the completion of the sequence of approximately one-third of the human genome as well as genomes of model organisms and more than 90 pathogen genomes. In October 2006, new funding was awarded by the Wellcome Trust to exploit the wealth of genome data now available to answer important questions about health and disease. http://www.sanger.ac.uk

The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. We support the brightest minds in biomedical research and the medical humanities. Our breadth of support includes public engagement, education and the application of research to improve health. We are independent of both political and commercial interests. http://www.wellcome.ac.uk

END



ELSE PRESS RELEASES FROM THIS DATE:

60 Utahns are among landmark large-scale genome sequencing study

2010-10-28
(SALT LAKE CITY)—Just seven months after University of Utah geneticists took part in a landmark study that sequenced for the first time the genome of an entire Utah family, U of U researchers have taken part in another historic study that is the first large-scale genome sequencing project – 179 people representing three continents – and 60 Utahns played a major role in this study, too. Published Wednesday, Oct. 27, 2010, in Nature, the study demonstrates how quickly the science of genome sequencing is expanding – first from individuals, then to families, and now to large ...

'Smart drug' targets new mutation, dramatically shrinks aggressive sarcoma and lung cancer

Smart drug targets new mutation, dramatically shrinks aggressive sarcoma and lung cancer
2010-10-28
BOSTON--A new oral drug caused dramatic shrinkage of a patient's rare, aggressive form of soft-tissue cancer that was driven by an abnormally activated protein, physician-scientists from Dana-Farber Cancer Institute report in the Oct. 28 issue of the New England Journal of Medicine. A second patient who had a similar tumor that was not fueled by the mutant protein, called ALK (named for the first disease in which it was found, anaplastic lymphoma kinase), failed to respond to the drug, said the researchers, confirming the inhibitor's specificity for the abnormal protein. ...

New methods detect subtleties in human genomes' repetitive landscapes

New methods detect subtleties in human genomes repetitive landscapes
2010-10-28
Scientists have invented methods to scout the human genome's repetitive landscapes, where DNA sequences are highly identical and heavily duplicated. These advances, as reported today in Science, can identify subtle but important differences among people in the number and content of repeated DNA segments. These copy number variations partly account for the normal diversity among people. Copy number variations might also be why some people, and not others, have certain disorders or disease susceptibilities, and might also determine how severely they are affected. Until ...

Certain cancer therapies' success depends on presence of immune cell, Stanford study shows in mice

2010-10-28
STANFORD, Calif. — The immune system may play a critical role in ensuring the success of certain types of cancer therapies, according to a new study by researchers at the Stanford University School of Medicine. The research showed treatments that disable cancer-promoting genes called oncogenes are much more successful in eradicating tumors in the presence of a signaling molecule secreted by kind of immune cell called a T helper cell. The finding is important because many drugs now in use in humans are often tested in lab animals with weakened immune systems and many human ...

Controlling individual cortical nerve cells by human thought

Controlling individual cortical nerve cells by human thought
2010-10-28
PASADENA, Calif.—Five years ago, neuroscientist Christof Koch of the California Institute of Technology (Caltech), neurosurgeon Itzhak Fried of UCLA, and their colleagues discovered that a single neuron in the human brain can function much like a sophisticated computer and recognize people, landmarks, and objects, suggesting that a consistent and explicit code may help transform complex visual representations into long-term and more abstract memories. Now Koch and Fried, along with former Caltech graduate student and current postdoctoral fellow Moran Cerf, have found ...

Revising the timeline for deadly pancreatic cancer

2010-10-28
Pancreatic tumors are one of the most lethal cancers, with fewer than five percent of patients surviving five years after diagnosis. But a new study that peers deeply into the genetics of pancreatic cancer presents a bit of good news: an opportunity for early diagnosis. In contrast to earlier predictions, many pancreatic tumors are, in fact, slow growing, taking nearly 20 years to become lethal after the first genetic perturbations appear. "There have been two competing theories explaining why pancreatic cancers are so lethal," says Bert Vogelstein, the Howard Hughes ...

1000 Genomes Project publishes analysis of completed pilot phase

2010-10-28
Small genetic differences between individuals help explain why some people have a higher risk than others for developing illnesses such as diabetes or cancer. Today in the journal Nature, the 1000 Genomes Project, an international public-private consortium, published the most comprehensive map of these genetic differences, called variations, estimated to contain approximately 95 percent of the genetic variation of any person on Earth. Researchers produced the map using next-generation DNA sequencing technologies to systematically characterize human genetic variation ...

Large-scale fish farm production offsets environmental gains

2010-10-28
VICTORIA – Industrial-scale aquaculture production magnifies environmental degradation, according to the first global assessment of the effects of marine finfish aquaculture (e.g. salmon, cod, turbot and grouper) released today. This is true even when farming operations implement the best current marine fish farming practices. Dr. John Volpe and his team at the University of Victoria developed the Global Aquaculture Performance Index (GAPI), an unprecedented system for objectively measuring the environmental performance of fish farming. "Scale is critical," said Dr. ...

Spiral galaxies stripped bare

Spiral galaxies stripped bare
2010-10-28
HAWK-I [1] is one of the newest and most powerful cameras on ESO's Very Large Telescope (VLT). It is sensitive to infrared light, which means that much of the obscuring dust in the galaxies' spiral arms becomes transparent to its detectors. Compared to the earlier, and still much-used, VLT infrared camera ISAAC, HAWK-I has sixteen times as many pixels to cover a much larger area of sky in one shot and, by using newer technology than ISAAC, it has a greater sensitivity to faint infrared radiation [2]. Because HAWK-I can study galaxies stripped bare of the confusing effects ...

Singapore scientist leads team to discover origin of brain immune cells

2010-10-28
A team of international scientists led by Dr Florent Ginhoux of the Singapore Immunology Network (SIgN) of Singapore's Agency of Science, Technology and Research (A*STAR), have made a breakthrough that could lead to a better understanding of many neurodegenerative and inflammatory brain disorders. Their work, published in top scientific journal Science, uncovered the origins of microglia, which are white blood cells specific to the brain, and showed that, in mice, microglia had a completely different origin than other white blood cells. This understanding may lead to the ...

LAST 30 PRESS RELEASES:

Understanding survival disparities in cancer care: A population-based study on mobility patterns

Common sleep aid may leave behind a dirty brain

Plant cells gain immune capabilities when it’s time to fight disease

Study sheds light on depression in community-dwelling older adults

Discovery of new class of particles could take quantum mechanics one step further

Cost-effectiveness of a polypill for cardiovascular disease prevention in an underserved population

Development and validation of a tool to predict onset of mild cognitive impairment and Alzheimer dementia

New AI predicts inner workings of cells

Scientists uncover key step in how diazotrophs “fix” nitrogen

The hidden mechanics of earthquake ignition

Scientists leverage artificial intelligence to fast-track methane mitigation strategies in animal agriculture

Researchers unravel a novel mechanism regulating gene expression in the brain that could guide solutions to circadian and other disorders

Discovery of 'Punk' and 'Emo' fossils challenges our understanding of ancient molluscs

Exposure to aircraft noise linked to worse heart function

Deans of the University of Nottingham visited Korea University's College of Medicine

New study assesses wildfire risk from standing dead trees in Yellowstone National Park

A new approach for improving hot corrosion resistance and anti-oxidation performance in silicide coating on niobium alloys

UC San Diego to lead data hub of CDC-funded pandemic preparedness network

Biomimetic teakwood structured environmental barrier coating

Low-cost system will improve communications among industrial machines

Elderberry juice shows benefits for weight management, metabolic health

A new era in genetic engineering

Study identifies coastal black pine trees resistant to tsunamis and strong winds

From gender dysphoria to special skills: decoding the link

Study advances possible blood test for early-stage Alzheimer’s disease

New international research collaboration to develop and test an improved dietary supplement for pregnant women

Presenting a path forward for future genetically-modified pig heart transplants: lessons learned from second patient

When the past meets the future: Innovative drone mapping unlocks secrets of Bronze Age ‘mega fortress’ in the Caucasus

AI could improve the success of IVF treatment

Moving in sync, slowly, in glassy liquids

[Press-News.org] Forces for cancer spread: Genomic instability and evolutionary selection
Pancreatic cancer genomes show remarkable mutation effects