PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

New insights into how materials transfer heat could lead to improved electronics

2013-05-16
(Press-News.org) TORONTO, ON – U of T Engineering researchers, working with colleagues from Carnegie Mellon University, have published new insights into how materials transfer heat, which could lead eventually to smaller, more powerful electronic devices.

Integrated circuits and other electronic parts have been shrinking in size and growing in complexity and power for decades. But as circuits get smaller, it becomes more difficult to dissipate waste heat. For further advances to be made in electronics, researchers and industry need to find ways of tracking heat transfer in products ranging from smart phones to computers to solar cells.

Dan Sellan and Professor Cristina Amon, of U of T's Mechanical and Industrial Engineering department, investigated a new tool to measure the thermal and vibrational properties of solids. Working with colleagues from Carnegie Mellon University, they studied materials in which heat is transferred by atomic vibrations in packets called phonons. Their results were recently published in Nature Communications.

"In an analogy to light, phonons come in a spectrum of colors, and we have developed a new tool to measure how different color phonons contribute to the thermal conductivity of solids," said Jonathan Malen, an assistant professor of Mechanical Engineering at CMU.

According to the researchers, the new tool will give both industry and academia a clearer picture of how an electronic device's ability to dissipate heat shrinks with its size, and how materials can be structured at the nanoscale to change their thermal conductivity.

For example, in the initial demonstration, the team showed that as silicon microprocessors continue to shrink, their operating temperatures will be further challenged by reduced thermal conductivity.

"Our modeling work provides an in-depth look at how individual phonons impact thermal conductivity," said Sellan, who undertook his research as a PhD Candidate in Professor Amon's lab. Currently an NSERC Postdoctoral Fellow at The University of Texas at Austin, Sellan is developing experimental techniques for thermal measurements.

Professor Amon, who is also Dean of the Faculty of Applied Science & Engineering at U of T, said Sellan's insights will allow researchers to design nanostructured thermoelectric materials with increased efficiency in converting waste heat to electrical energy. This work has exciting implications for the future of nano-scale thermal conductivity research."

### Founded in 1873, U of T Engineering has approximately 5,200 undergraduate students, 1,950 graduate students and 240 faculty members. U of T Engineering is at the fore of innovation in engineering education and research and ranks first in Canada and among the top Engineering schools worldwide.

For more information, please contact: Terry Lavender
Communications & Media Relations Strategist
Faculty of Applied Science & Engineering, University of Toronto
Tel: 416-978-4498
Email: terry.lavender@utoronto.ca
Web: http://www.engineering.utoronto.ca


ELSE PRESS RELEASES FROM THIS DATE:

High-testosterone competitors more likely to choose red

2013-05-16
Why do so many sports players and athletes choose to wear the color red when they compete? A new study to be published in Psychological Science, a journal of the Association for Psychological Science, suggests that it may have to do with their testosterone levels. The new study, conducted by psychological scientist Daniel Farrelly of the University of Sunderland and colleagues, demonstrated that males who chose red as their color in a competitive task had higher testosterone levels than other males who chose blue. "The research shows that there is something special ...

Scientists capture first direct proof of Hofstadter butterfly effect

2013-05-16
A team of researchers from several universities – including UCF –has observed a rare quantum physics effect that produces a repeating butterfly-shaped energy spectrum in a magnetic field, confirming the longstanding prediction of the quantum fractal energy structure called Hofstadter's butterfly. This discovery by the team paves the way for engineering new types of extraordinary nanoscale materials that can be used to develop smaller, lighter and faster electronics, including sensors, cell phones, tablets and laptops. First predicted by American physicist Douglas Hofstadter ...

What role do processing bodies play in cell survival and protection against viral infection?

2013-05-16
New Rochelle, NY, May 16, 2013—As scientists learn more about processing bodies (PBs), granules present within normal cells, they are unraveling the complex role PBs play in maintaining cellular homeostasis by regulating RNA metabolism and cell signaling. Emerging research is revealing how virus infection alters PBs to enhance viral replication and how, in turn, PBs are able respond and limit a virus's ability to reproduce. This novel mechanism allows PBs to contribute to the body's immune defenses, as described in an article in DNA and Cell Biology, a peer-reviewed journal ...

Invasive crazy ants are displacing fire ants in areas throughout southeastern US

2013-05-16
AUSTIN, Texas — Invasive "crazy ants" are displacing fire ants in areas across the southeastern United States, according to researchers at The University of Texas at Austin. It's the latest in a history of ant invasions from the southern hemisphere and may prove to have dramatic effects on the ecosystem of the region. The "ecologically dominant" crazy ants are reducing diversity and abundance across a range of ant and arthropod species — but their spread can be limited if people are careful not to transport them inadvertently, according to Ed LeBrun, a research associate ...

Innovative screening method uses RNA interference technology to identify 'lethal' and 'rescuer' genes

2013-05-16
New Rochelle, May 16, 2013–Lethal and rescuer genes are defined as genes that when inactivated result in cell death or enhanced cell growth, respectively. The ability to identify these genes in large-scale automated screening campaigns could lead to the discovery of valuable new drug targets. A genome-wide lethality screen that relies on RNA interference technology and led to the validation of 239 gene candidates essential for cell survival is described in ASSAY and Drug Development Technologies, a peer-reviewed journal published from Mary Ann Liebert, Inc., publishers. ...

Security risks found in sensors for heart devices, consumer electronics

2013-05-16
ANN ARBOR—The type of sensors that pick up the rhythm of a beating heart in implanted cardiac defibrillators and pacemakers are vulnerable to tampering, according to a new study conducted in controlled laboratory conditions. Implantable defibrillators monitor the heart for irregular beating and, when necessary, administer an electric shock to bring it back into normal rhythm. Pacemakers use electrical pulses to continuously keep the heart in pace. In experiments in simulated human models, an international team of researchers demonstrated that they could forge an erratic ...

DNA-guided assembly yields novel ribbon-like nanostructures

2013-05-16
UPTON, NY-Scientists at the U.S. Department of Energy's Brookhaven National Laboratory have discovered that DNA "linker" strands coax nano-sized rods to line up in way unlike any other spontaneous arrangement of rod-shaped objects. The arrangement-with the rods forming "rungs" on ladder-like ribbons linked by multiple DNA strands-results from the collective interactions of the flexible DNA tethers and may be unique to the nanoscale. The research, described in a paper published online in ACS Nano, a journal of the American Chemical Society, could result in the fabrication ...

Endothelium, heal thyself

2013-05-16
BOSTON – The endothelium, the cellular layer lining the body's blood vessels, is extremely resilient. Measuring just a few hundred nanometers in thickness, this super-tenuous structure routinely withstands blood flow, hydrostatic pressure, stretch and tissue compression to create a unique and highly dynamic barrier that maintains the organization necessary to partition tissues from the body's circulatory system. It's also extremely adaptable. In instances when the barrier must be physically breached to enable immune cells to reach various regions of the body to fight ...

Cancer survivors battle with the blues

2013-05-16
Depressed cancer survivors are twice as likely to die prematurely than those who do not suffer from depression, irrespective of the cancer site. That's according to a new study, by Floortje Mols and colleagues, from Tilburg University in The Netherlands. Their work is published online in Springer's Journal of Cancer Survivorship. The prevalence of cancer is rising, as are the number of individuals who are cured of their cancer or are living with it as a chronic disease. This is partly due to the aging of the population and more effective treatments. As a result, many ...

Late breaking clinical trials introduced for first time at EHRA EUROPACE 2013

2013-05-16
Sophia Antipolis, 16 May 2013: A packed programme is promised for EHRA EUROPACE2013 meeting, taking place in Athens, Greece, June 23 to 26, with the results of ten late breaking clinical trials and over 1000 original abstracts featured, offering exciting opportunities for news stories. The biennial meeting, which for the first time represents a collaboration between the European Heart Rhythm Association (EHRA) of the ESC and the ESC Working Groups on Cardiac Cellular Electrophysiology and e Cardiology, promises to be more wide ranging than ever before. An eagerly anticipated ...

LAST 30 PRESS RELEASES:

Smartphone-based interventions show promise for reducing alcohol and cannabis use: New research

How do health care professionals determine eligibility for MAiD?

Microplastics detected in rural woodland 

JULAC and Taylor & Francis sign open access agreement to boost the impact of Hong Kong research

Protecting older male athletes’ heart health 

KAIST proposes AI-driven strategy to solve long-standing mystery of gene function

Eye for trouble: Automated counting for chromosome issues under the microscope

The vast majority of US rivers lack any protections from human activities, new research finds

Ultrasound-responsive in situ antigen "nanocatchers" open a new paradigm for personalized tumor immunotherapy

Environmental “superbugs” in our rivers and soils: new one health review warns of growing antimicrobial resistance crisis

Triple threat in greenhouse farming: how heavy metals, microplastics, and antibiotic resistance genes unite to challenge sustainable food production

Earthworms turn manure into a powerful tool against antibiotic resistance

AI turns water into an early warning network for hidden biological pollutants

Hidden hotspots on “green” plastics: biodegradable and conventional plastics shape very different antibiotic resistance risks in river microbiomes

Engineered biochar enzyme system clears toxic phenolic acids and restores pepper seed germination in continuous cropping soils

Retail therapy fail? Online shopping linked to stress, says study

How well-meaning allies can increase stress for marginalized people

Commercially viable biomanufacturing: designer yeast turns sugar into lucrative chemical 3-HP

Control valve discovered in gut’s plumbing system

George Mason University leads phase 2 clinical trial for pill to help maintain weight loss after GLP-1s

Hop to it: research from Shedd Aquarium tracks conch movement to set new conservation guidance

Weight loss drugs and bariatric surgery improve the body’s fat ‘balance:’ study

The Age of Fishes began with mass death

TB harnesses part of immune defense system to cause infection

Important new source of oxidation in the atmosphere found

A tug-of-war explains a decades-old question about how bacteria swim

Strengthened immune defense against cancer

Engineering the development of the pancreas

The Journal of Nuclear Medicine ahead-of-print tip sheet: Jan. 9, 2026

Mount Sinai researchers help create largest immune cell atlas of bone marrow in multiple myeloma patients

[Press-News.org] New insights into how materials transfer heat could lead to improved electronics