(Press-News.org) University Park, PA -- One of the densest objects in the universe, a neutron star about 10,000 light years from Earth, has been discovered suddenly putting the brakes on its spinning speed. The event is a mystery that holds important clues for understanding how matter reacts when it is squeezed more tightly than the density of an atomic nucleus -- a state that no laboratory on Earth has achieved. The discovery, by an international team of scientists that includes a Penn State University astronomer, will be published in the journal Nature on 30 May 2013.
The scientists detected the neutron star's abrupt slow-down with NASA's Swift observatory, a satellite with three telescopes whose science and flight operations are controlled by Penn State from the Mission Operations Center on the University Park campus. "Because Swift has the ability to regularly measure the spin of this unusual star, we have been able to observe its surprising evolution," said Penn State astronomer Jamie Kennea, a coauthor of the Nature paper. "This neutron star is doing something completely unexpected. Its speed of rotation has been dropping at an increasingly rapid rate ever since the initial sudden decrease in its spin."
Although astronomers have observed neutron stars suddenly speeding up their spins -- an event called a "glitch" -- they never before had observed a neutron star suddenly slowing down. "We've dubbed this event an 'anti-glitch' because it affected this star in exactly the opposite manner of every other clearly identified glitch seen in neutron stars," said co-author Neil Gehrels, the lead researcher on the Swift mission, at NASA's Goddard Space Flight Center. The star is in the Northern Hemisphere sky in the constellation Cassiopeia.
A neutron star is the closest thing to a black hole that astronomers can observe directly. It is the crushed core of a massive star that ran out of fuel, collapsed under its own weight, and then exploded as a supernova. The matter left behind after the explosion is compressed into a ball only about 12 miles across but with a mass roughly half a million times more than the mass of the Earth. One teaspoon of a neutron star weighs 1 billion tons, roughly twice the combined weight of all the cars in the United States.
Neutron stars can reach speeds of rotation as fast as the blades of a kitchen blender -- up to 43,000 revolutions per minute (rpm), and can have magnetic fields a trillion times stronger than the Earth's. But this abruptly slowing neutron star, named 1E2259+586, is an even more bizarre and rare kind of neutron star. It is one of fewer than two dozen neutron stars called "magnetars" because they have such ultra-strong magnetic fields -- up to approximately 5,000 trillion times that of the Earth. Magnetars also can have dramatic outbursts of X-rays so strong that they can affect Earth's atmosphere, even if the magnetar is sending its blasts from the opposite side of our Milky Way galaxy. "Magnetars are the universe's strongest magnets and are some of the best laboratories we have for understanding pure physics," Kennea said. "The extreme conditions on these stars could never be replicated in any laboratory here on Earth."
Using the Swift observatory's X-ray Telescope, the scientists observed regular X-ray pulses from magnetar 1E 2259+586 from July 2011 to mid-April 2012. During this time, the magnetar was spinning once every 7 seconds, or about 8 rpm, and it appeared to be slowing down at a gradual and stable rate. But at the next scheduled observation on 28 April 2012, the data captured by Swift showed the star's spin had abruptly slowed by 2.2 millionths of a second -- the surprisingly sudden change that now is called an anti-glitch.
On 21 April, just a week before the Swift observation that discovered this anti-glitch, the magnetar produced a brief but intense X-ray burst detected by the Gamma-ray Burst Monitor aboard NASA's Fermi Gamma-ray Space Telescope. The scientists now think this 36-millisecond eruption of high-energy light likely marked the changes that drove the magnetar into the abrupt "anti-glitch" slowdown mode. In addition, continuing observations have revealed that the magnetar's spin is continuing to slow down at a much faster rate.
These discoveries confront astronomers with a new theoretical challenge. What exactly could cause the magnetar's X-ray outburst, then the abrupt slowdown of its rotation, and now the even faster deceleration of the star's rotation that the Swift observatory is continuing to detect?
Theories of the internal structure of a neutron star, which were current before the anti-glitch discovery, envision a crust of electrons and charged particles above an interior containing, among other oddities, a bizarre, friction-free state of matter called a neutron superfluid. According to these theories, because the surface of a neutron star accelerates streams of high-energy particles through its intense magnetic field, the star's crust should always be losing energy and slowing down -- but the fluid in the interior of the neutron star should resist being slowed. The crust could fracture under this strain, producing an X-ray outburst while also receiving a kick from the faster-spinning interior that would speed the star's rotation. So now, after the discovery of the anti-glitch, scientists need improved theories to explain the unexpected and continuing slowing-down of the rotation of magnetar 1E 2259+586.
In addition to the new anti-glitch mystery, this discovery is expected to catalyze renewed efforts to solve long-standing mysteries about the puzzling physics that rules super-dense states of matter in neutron stars and black holes -- the most mysterious objects in the universe.
In addition to Kennea at Penn State and Gehrels at NASA Goddard, other coauthors of the Nature paper include astronomers at McGill University in Montreal in Canada, the University of Hong Kong, and the University of Leicester in the United Kingdom. The Swift observatory, launched into Earth orbit in November 2004, is managed by Goddard Space Flight Center and operated in collaboration with Penn State University, the Los Alamos National Laboratory, and Orbital Sciences Corporation, with international collaborators in the United Kingdom and Italy and including contributions from Germany and Japan.
###
CONTACTS
Jamie Kennea: (+1)814-865-0234, kennea@swift.psu.edu
Barbara Kennedy (Penn State PIO): (+1)814-863-4682, science@psu.edu
Lynn Cominsky (Swift PIO): (+1)707-664-2655, lynnc@universe.sonoma.edu
END
HOUSTON -- (May 30, 2013) – In some neurodegenerative diseases, and specifically in a devastating inherited condition called spinocerebellar ataxia 1 (SCA1), the answer may not be an "all-or-nothing," said a collaboration of researchers from Baylor College of Medicine, the Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital and the University of Minnesota in a report that appears online in the journal Nature. The problem might be solved with just a little less.
"If you can only decrease the levels of ataxin-1 (the protein involved in SCA1) ...
UCLA research has shown that that children with attention-deficit hyperactivity disorder are far more likely than other kids to develop serious substance abuse problems as adolescents and adults. But do stimulant medications used to treat ADHD contribute to the risk?
UCLA psychologists have conducted the most comprehensive assessment ever on this question and have found that children with ADHD who take medications such as Ritalin and Adderall are at no greater risk of using alcohol, marijuana, nicotine or cocaine later in life than kids with ADHD who don't take these ...
During the last ice age, when thick ice covered the Arctic, many scientists assumed that the deep currents below that feed the North Atlantic Ocean and help drive global ocean currents slowed or even stopped. But in a new study in Nature, researchers show that the deep Arctic Ocean has been churning briskly for the last 35,000 years, through the chill of the last ice age and warmth of modern times, suggesting that at least one arm of the system of global ocean currents that move heat around the planet has behaved similarly under vastly different climates.
"The Arctic ...
Charles H. Hennekens, MD, DrPH, the first Sir Richard Doll professor and senior academic advisor to the dean in the Charles E. Schmidt College of Medicine at Florida Atlantic University has published in the current issue of the Lancet the most comprehensive analyses of the benefits and risks of non-steroidal anti-inflammatory drugs (NSAIDs), which include cyclo-oxygenase-2 inhibitors (coxibs).
Hennekens and colleagues from around the world, under the direction of the Clinical Trial Service and Epidemiology Studies Unit at the University of Oxford, conducted a world-wide ...
Researchers at Griffith University's Centre for Quantum Dynamics have demonstrated that, contrary to what the Heisenberg uncertainty relation may suggest, particle properties such as position and momentum can be measured simultaneously with high precision.
But it comes at a cost.
The findings have been published in Experimental Test of Universal Complementarity Relations in the prestigious journal Physical Review Letters.
Co-author Dr Michael Hall said the work represents an important advance in the quantitative understanding and experimental verification of complementarity; ...
It is a commonly held perception that getting in shape and staying there requires hard work and hours upon hours of training. New research shows the opposite – it seems that only four minutes of vigorous activity three times per week is enough to be fit and healthy.
Regular training improves maximal oxygen uptake (VO2max), which is a well-established measure of physical fitness. However, just how much exercise, and how intense that exercise should be to deliver the biggest benefit remains to be defined. Now, researchers from the KG Jebsen – Centre of Exercise in Medicine ...
PITTSBURGH, May 30, 2013– Medical emergencies during commercial airline travel can be a frightening experience, but most situations are well-treated by other passengers and flight attendants, in collaboration with consulting physicians on the ground. A University of Pittsburgh study published today in the New England Journal of Medicine found that doctors, nurses and other medical professionals on the aircraft helped to treat sick fellow passengers in three-fourths of the emergencies studied.
Led by Christian Martin-Gill, M.D., M.P.H., assistant professor of emergency ...
In one of the first successful attempts at genetically engineering mosquitoes, Howard Hughes Medical Institute (HHMI) researchers have altered the way the insects respond to odors, including the smell of humans and the insect repellant DEET. The research not only demonstrates that mosquitoes can be genetically manipulated using the latest research techniques, but paves the way to understanding why the insect is so attracted to humans, and how to block that attraction.
"The time has come now to do genetics in these important disease-vector insects. I think our new work ...
Researchers from Northeastern University are among the many scientists helping NASA use the weightlessness of space to design stronger materials here on Earth.
Structural alloys might not sound familiar, but they are an integral part of everyday materials, such as aircraft wings, car bodies, engine blocks, or gas pipelines. These materials are produced through solidification—a process similar to the making of ice cubes. "Solidification happens all around us, either naturally, as during the crystallization of familiar snow-flakes in the atmosphere, or in technological ...
CORVALLIS, Ore. – Researchers at Oregon State University have helped develop new environmental monitoring technology that will allow farmers thousands of miles away, in west and central Asia, to save millions of dollars while more effectively combatting a pest that is threatening their wheat crops.
Twenty million acres of wheat in parts of Asia and North Africa are threatened by the "Sunn pest," a bug that can destroy the value of wheat. Speed in confronting this pest is essential – even minor delays in use of pesticides can cut wheat yield by 90 percent, and if just ...