(Press-News.org) DETROIT – A specific MicroRNA, a short set of RNA (ribonuclease) sequences, naturally packaged into minute (50 nanometers) lipid containers called exosomes, are released by stem cells after a stroke and contribute to better neurological recovery according to a new animal study by Henry Ford Hospital researchers.
The important role of a specific microRNA transferred from stem cells to brain cells via the exosomes to enhance functional recovery after a stroke was shown in lab rats. This study provides fundamental new insight into how stem cells affect injured tissue and also offers hope for developing novel treatments for stroke and neurological diseases, the leading cause of long-term disability in adult humans.
The study, to be published in the journal Stem Cells, is available at http://www.ncbi.nlm.nih.gov/pubmed/23630198.
Although most stroke victims recover some ability to voluntarily use their hands and other body parts, nearly half are left with weakness on one side of their body, while a substantial number are permanently disabled.
Currently no treatment exists for improving or restoring this lost motor function in stroke patients, mainly because of mysteries about how the brain and nerves repair themselves.
"This study may have solved one of those mysteries by showing how certain stem cells play a role in the brain's ability to heal itself to differing degrees after stroke or other trauma," says study author Michael Chopp, Ph.D., scientific director of the Henry Ford Neuroscience Institute and vice chairman of the department of Neurology at Henry Ford Hospital.
The researchers noted that Henry Ford's Institutional Animal Care and Use Committee approved all the experimental procedures used in the new study.
The experiment began by isolating mesenchymal stem cells (MSCs) from the bone marrow of lab rats. These MSCs are then genetically altered to release exosomes that contain specific microRNA molecules. The MSCs then become "factories" producing exosomes containing specific microRNAs. These microRNAs act as master switches that regulate biological function.
The new study showed for the first time that a specific microRNA, miR-133b, carried by these exosomes contributes to functional recovery after a stroke.
The researchers genetically raised or lowered the amount of miR-133b in MSCs and, respectively, treated the rats. When these MSCs are injected into the bloodstream 24 hours after stroke, they enter the brain and release their exosomes. When the exosomes were enriched with the miR-133b, they amplified neurological recovery, and when the exosomes were deprived of the miR-133b, the neurological recovery was substantially reduced.
Stroke was induced under anesthesia by inserting a nylon thread up the carotid artery to occlude a major artery in the brain, the middle cerebral artery. MSCs were then injected 24 hours after the induction of stroke in these animals and neurological recovery was measured.
As a measure on neurological recovery, rats were given two types of behavioral tests to measure the normal function of their front legs and paws – a "foot-fault test," to see how well they could walk on an unevenly spaced grid; and an "adhesive removal test" to measure how long it took them to remove a piece of tape stuck to their front paws.
Researchers then separated the disabled rats into several groups and injected each group with a specific dosage of saline, MSCs and MSCs with increased or decreased miR-133b, respectively. The two behavioral tests were again given to the rats three, seven and 14 days after treatment.
The data demonstrated that the enriched miR-133b exosome package greatly promoted neurological recovery and enhanced axonal plasticity, an aspect of brain rewiring, and the diminished miR-133b exosome package failed to enhance neurological recovery
While the research team was careful to note that this was an animal study, its findings offer hope for new ways to address the single biggest concern of stroke victims as well as those with neural injury such as traumatic brain injury and spinal cord damage – regaining neurological function for a better quality of life.
###
Funding source: R01 AG037506/AG/NIA NIH HHS and R01 NS066041/NS/NINDS NIH HHS
Researchers gain new molecular-level understanding of the brain's recovery after stroke
2013-06-13
ELSE PRESS RELEASES FROM THIS DATE:
Light-carved 'nano-volcanoes' hold promise for drug delivery
2013-06-13
Researchers from North Carolina State University have developed a method for creating "nano-volcanoes" by shining various colors of light through a nanoscale "crystal ball" made of a synthetic polymer. These nano-volcanoes can store precise amounts of other materials and hold promise for new drug-delivery technologies.
The researchers create the nano-volcanoes by placing spherical, transparent polymer nanoparticles directly onto the flat surface of a thin film. They then shine ultraviolet light through the transparent sphere, which scatters the light and creates a pattern ...
DNA brings materials to life
2013-06-13
A colloid is a substance spread out evenly inside another substance. Everyday examples include milk, styrofoam, hair sprays, paints, shaving foam, gels and even dust, mud and fog. One of the most interesting properties of colloids is their ability to self-assemble – to aggregate spontaneously into well-defined structures, driven by nothing but local interactions between the colloid's particles. Self-assembly has been of major interest in industry, since controlling it would open up a whole host of new technologies, such as smart drug-delivery patches or novel paints that ...
DNA sequencing uncovers secrets of white cliffs of Dover
2013-06-13
The University of Exeter recently contributed to a major international project to sequence the genome of Emiliania huxleyi, the microscopic plankton species whose chalky skeletons form the iconic white cliffs of Dover. The results of the project are published this week in the journal Nature.
Emiliania huxleyi is one of the most abundant marine phytoplankton species and is a key player in the process of CO2 exchange between the atmosphere and the ocean. In some marine systems 20% of the total carbon is fixed by E. huxleyi. This microscopic alga has influenced the global ...
UF study finds brain-imaging technique can help diagnose movement disorders
2013-06-13
GAINESVILLE, Fla. — A new University of Florida study suggests a promising brain-imaging technique has the potential to improve diagnoses for the millions of people with movement disorders such as Parkinson's disease.
Utilizing the diffusion tensor imaging technique, as it is known, could allow clinicians to assess people earlier, leading to improved treatment interventions and therapies for patients.
The three-year study looked at 72 patients, each with a clinically defined movement disorder diagnosis. Using a technique called diffusion tensor imaging, the researchers ...
Gene offers an athlete's heart without the exercise
2013-06-13
Researchers at Case Western Reserve University have found that a single gene poses a double threat to disease: Not only does it inhibit the growth and spread of breast tumors, but it also makes hearts healthier.
In 2012, medical school researchers discovered the suppressive effects of the gene HEXIM1 on breast cancer in mouse models. Now they have demonstrated that it also enhances the number and density of blood vessels in the heart – a sure sign of cardiac fitness.
Scientists re-expressed the HEXIM1 gene in the adult mouse heart and found that the hearts grew heavier ...
Study points to role of nervous system in arthritis
2013-06-13
Arthritis is a debilitating disorder affecting one in 10 Canadians, with pain caused by inflammation and damage to joints.
Yet the condition is poorly managed in most patients, since adequate treatments are lacking – and the therapies that do exist to ease arthritis pain often cause serious side effects, particularly when used long-term. Any hope for developing more-effective treatments for arthritis relies on understanding the processes driving this condition.
A new study in the Journal of Neuroscience by researchers at McGill University adds to a growing body of ...
A peptide to protect brain function
2013-06-13
A structure called "the microtubule network" is a crucial part of our nervous system. It acts as a transportation system within nerve cells, carrying essential proteins and enabling cell-to-cell communications. But in neurodegenerative diseases like Alzheimer's, ALS, and Parkinson's, this network breaks down, hindering motor abilities and cognitive function.
Now Prof. Illana Gozes of Tel Aviv University's Sackler Faculty of Medicine has developed a new peptide in her lab, called NAP or Davunetide, that has the capacity to both protect and restore microtubule function. ...
Helping to restore balance after inner ear disorder
2013-06-13
Many disorders of the inner hear which affect both hearing and balance can be hugely debilitating and are currently largely incurable. Cochlear implants have been used for many years to replace lost hearing resulting from inner ear damage. However, to date, there has not been an analogous treatment for balance disorders resulting from inner ear disease. One potential new treatment is an implantable vestibular prosthesis which would directly activate the vestibular nerve by electrical stimulation. This prosthetic treatment is tested in a new study by Christopher Phillips ...
US forest management policy must evolve to meet bioenergy targets
2013-06-13
CHAMPAIGN, Ill. — In order to keep pace with the burgeoning demand for renewable energy, forest management policy in the U.S. must change to address environmental sustainability issues, according to an article by a University of Illinois expert in bioenergy law.
Unless the forestry sector can tailor sustainable forest management policies specifically to forest-to-energy feedstocks, its role in helping the country broaden its energy portfolio – and by extension, meeting ambitious bioenergy targets – may be limited in large part because of uncertainty about whether existing ...
No good substitute for race in college admissions: Research
2013-06-13
COLLEGE PARK, Md. – As the U.S. Supreme Court decides in a case involving racial preferences in higher education admissions (Fisher v. Texas), new University of Maryland-led research finds that socioeconomic diversity is no replacement for a direct consideration of race, as some have suggested. Still the research finds that a mix of students from differing socio-economic backgrounds has benefits.
The peer-reviewed study appears in the June issue of the "American Educational Research Journal." It evaluates the use of "socio-economic status" as a racially blind way to build ...