(Press-News.org) MIAMI – June 13, 2013 – The commercial value of spiny lobster (Panulirus argus) in the Caribbean reaches $1 billion annually, thus making it one of the most valuable fisheries in the region. In a new study of this iconic species, Ph.D. candidate Andrew Kough and Dr. Claire Paris of the Biophysical Interactions Lab at the University of Miami Rosenstiel School of Marine & Atmospheric Science, in collaboration with Dr. Mark Butler from Old Dominion University, studied the larval dispersal of this species in the Caribbean. The goal of the study was to describe the sources, sinks, and routes connecting the Caribbean spiny lobster metapopulation. The results led the team to propose marine resource management strategies that incorporate larval connectivity and "larval lobster credits" to sustain and rebuild exploited marine populations.
The study, which appears in the June 2013 issue of the journal PLOS ONE, synthesizes empirical data from laboratory studies, mail surveys and published works to parameterize an individual-based model of lobster larval connectivity, the Connectivity Modeling System (CMS), developed by Paris. Results were then verified using two independent studies, separated by over 500 km, giving validation to the model's performance -- something never before achieved for spiny lobster or other pelagic larvae over such large scales.
"Spiny lobster have extraordinary larvae with a prolonged planktonic existence that can last from five months to nearly a year, which confer them with high dispersal potential and complex pelagic pathways. Despite such challenges in documenting their pathways in the open ocean, just like hurricane models that help to reduce the 'cone of uncertainty', in this case we are improving settlement predictions by simulating large numbers of spawning events and tracking virtual larvae undergoing deep vertical migrations," says Paris.
The prevailing Caribbean current may not be the best path for successful long distance transportation for larvae. Contrary to the established belief, the team's results suggest that powerful currents entrain and push larvae out of the system, acting like a "Highway to Hell." The larvae that ultimately settle in the simulation spend little time within these strong currents. By moving to deeper depths as they age, spiny lobster larvae seem to increase their odds of settlement.
Butler adds, "Despite some expected degree of ocean mixing in the region, we found relatively high levels of larvae settling back to their place of origin. This was surprising for larvae that spend up to 12 months traveling in the plankton. But even more surprising was that these simple larval behaviors added to the model also enhanced population connectivity by preventing larvae from being flushed out of the system."
Based on the dynamics of long distance larval exchange uncovered using this computational model, the team proposes potential strategies that may be used to better manage the Caribbean spiny lobster population, and increase the sustainability of this economically important fishery.
"We blended ideas from international trade, terrestrial conservation, and carbon emission protocols to suggest 'larval lobster credits' as a viable cooperative management strategy. Predicted larval flow around in the region is dependent on several source regions, which are optimally located for wide ranging dispersal. If the nations receiving the influx of larvae and harvesting the adult lobsters were to invest and help protect these source regions, we believe that the future of the fishery will be more secure and may even improve, which would benefit the entire region ecologically and economically," explains Kough.
INFORMATION:
The paper, titled "Larval Connectivity and the International Management of Fisheries" by Kough, Paris, and Butler is available online at http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0064970 Funding to Butler and Paris from the NSF (OCE-0928930) and from the Coral Reef Targeted Research Program, a part of the World Bank Global Environment Fund enabled the study. Code development was funded through the NSF-RAPID program (OCE-1048697) to Paris.
About the University of Miami's Rosenstiel School The University of Miami is the largest private research institution in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, please visit http://www.rsmas.miami.edu.
'Tailing' spiny lobster larvae to protect them
New tools track planktonic larvae, offer possible solutions to safeguard this $1 billion industry
2013-06-13
ELSE PRESS RELEASES FROM THIS DATE:
Literacy, not income, key to improving public health in India
2013-06-13
Pro-market policies for developing countries have long been based on the belief that increasing average income is key to improving public health and societal well-being.
But new research on India published in the journal Social Science and Medicine shows that literacy - a non-income good - has a greater impact on public health in India.
While the researchers, based at Cambridge's Department of Sociology, accept it is broadly true that "wealthier is healthier" across the roughly 500 districts in India's 'major states', accounting for 95% of the total population, they ...
Spot-welding graphene nanoribbons atom by atom
2013-06-13
Scientists at Aalto University, Finland and Utrecht University, the Netherlands have created single atom contacts between gold and graphene nanoribbons.
In their article published in Nature Communications, the research team demonstrates how to make electrical contacts with single chemical bonds to graphene nanoribbons. Graphene is a single layer of carbon atoms arranged in a honeycomb lattice. It is anticipated to be a revolutionising material for future electronics.
Graphene transistors functioning at room temperature require working at the size scale of less than ...
After an ACL tear: Research opens door to new treatments to improve recovery for athletes
2013-06-13
ANN ARBOR, Mich. — Striking the likes of Chicago Bulls' Derrick Rose, L.A. Lakers' Kobe Bryant and Detroit Tigers' Victor Martinez, tears in the anterior cruciate ligament (ACL) are one of the most rampant and serious knee injuries among athletes.
Now, researchers from the University of Michigan Health System have identified a new drug target that may prevent one of the most dreaded consequences of an ACL tear –the weakening or loss of muscle tissue (muscle atrophy) that can be a career-killer in sports and ultimately develop into osteoarthritis.
A hormone called myostatin ...
Researchers gain new molecular-level understanding of the brain's recovery after stroke
2013-06-13
DETROIT – A specific MicroRNA, a short set of RNA (ribonuclease) sequences, naturally packaged into minute (50 nanometers) lipid containers called exosomes, are released by stem cells after a stroke and contribute to better neurological recovery according to a new animal study by Henry Ford Hospital researchers.
The important role of a specific microRNA transferred from stem cells to brain cells via the exosomes to enhance functional recovery after a stroke was shown in lab rats. This study provides fundamental new insight into how stem cells affect injured tissue and ...
Light-carved 'nano-volcanoes' hold promise for drug delivery
2013-06-13
Researchers from North Carolina State University have developed a method for creating "nano-volcanoes" by shining various colors of light through a nanoscale "crystal ball" made of a synthetic polymer. These nano-volcanoes can store precise amounts of other materials and hold promise for new drug-delivery technologies.
The researchers create the nano-volcanoes by placing spherical, transparent polymer nanoparticles directly onto the flat surface of a thin film. They then shine ultraviolet light through the transparent sphere, which scatters the light and creates a pattern ...
DNA brings materials to life
2013-06-13
A colloid is a substance spread out evenly inside another substance. Everyday examples include milk, styrofoam, hair sprays, paints, shaving foam, gels and even dust, mud and fog. One of the most interesting properties of colloids is their ability to self-assemble – to aggregate spontaneously into well-defined structures, driven by nothing but local interactions between the colloid's particles. Self-assembly has been of major interest in industry, since controlling it would open up a whole host of new technologies, such as smart drug-delivery patches or novel paints that ...
DNA sequencing uncovers secrets of white cliffs of Dover
2013-06-13
The University of Exeter recently contributed to a major international project to sequence the genome of Emiliania huxleyi, the microscopic plankton species whose chalky skeletons form the iconic white cliffs of Dover. The results of the project are published this week in the journal Nature.
Emiliania huxleyi is one of the most abundant marine phytoplankton species and is a key player in the process of CO2 exchange between the atmosphere and the ocean. In some marine systems 20% of the total carbon is fixed by E. huxleyi. This microscopic alga has influenced the global ...
UF study finds brain-imaging technique can help diagnose movement disorders
2013-06-13
GAINESVILLE, Fla. — A new University of Florida study suggests a promising brain-imaging technique has the potential to improve diagnoses for the millions of people with movement disorders such as Parkinson's disease.
Utilizing the diffusion tensor imaging technique, as it is known, could allow clinicians to assess people earlier, leading to improved treatment interventions and therapies for patients.
The three-year study looked at 72 patients, each with a clinically defined movement disorder diagnosis. Using a technique called diffusion tensor imaging, the researchers ...
Gene offers an athlete's heart without the exercise
2013-06-13
Researchers at Case Western Reserve University have found that a single gene poses a double threat to disease: Not only does it inhibit the growth and spread of breast tumors, but it also makes hearts healthier.
In 2012, medical school researchers discovered the suppressive effects of the gene HEXIM1 on breast cancer in mouse models. Now they have demonstrated that it also enhances the number and density of blood vessels in the heart – a sure sign of cardiac fitness.
Scientists re-expressed the HEXIM1 gene in the adult mouse heart and found that the hearts grew heavier ...
Study points to role of nervous system in arthritis
2013-06-13
Arthritis is a debilitating disorder affecting one in 10 Canadians, with pain caused by inflammation and damage to joints.
Yet the condition is poorly managed in most patients, since adequate treatments are lacking – and the therapies that do exist to ease arthritis pain often cause serious side effects, particularly when used long-term. Any hope for developing more-effective treatments for arthritis relies on understanding the processes driving this condition.
A new study in the Journal of Neuroscience by researchers at McGill University adds to a growing body of ...
LAST 30 PRESS RELEASES:
SNU researchers develop world’s first technology to observe atomic structural changes of nanoparticles in 3D
SNU researchers develop a new synthesis technology of single crystal 2D semiconductors, “Hypotaxy,” to enhance the commercialization of next-generation 2D semiconductors
Graphene production method offers green alternative to mining
Researchers discover a cause of leptin resistance—and how to reverse it
Heat from the sun affects seismic activity on Earth
Postoperative aspiration pneumonia among adults using GLP-1 receptor agonists
Perceived discrimination in health care settings and care delays in patients with diabetes and hypertension
Postoperative outcomes following preweekend surgery
Nearly 4 of 10 Americans report sports-related mistreatment
School absence patterns could ID children with chronic GI disorders, research suggests
Mount Sinai researchers identify molecular glues that protect insulin-producing cells from damage related to diabetes
Study: Smartwatches could end the next pandemic
Equal distribution of wealth is bad for the climate
Evidence-based strategies improve colonoscopy bowel preparation quality, performance, and patient experience
E. (Sarah) Du, Ph.D., named Senior Member, National Academy of Inventors
Study establishes “ball and chain” mechanism inactivates key mammalian ion channel
Dicamba drift: New use of an old herbicide disrupts pollinators
Merging schools to reduce segregation
Ending pandemics with smartwatches
Mapping consensus locations for offshore wind
Breakthrough in clean energy: Palladium nanosheets pave way for affordable hydrogen
Novel stem cell therapy repairs irreversible corneal damage in clinical trial
News article or big oil ad? As native advertisements mislead readers on climate change, Boston University experts identify interventions
Advanced genetic blueprint could unlock precision medicine
Study: World’s critical food crops at imminent risk from rising temperatures
Chemistry: Triple bond formed between boron and carbon for the first time
How a broken bone from arm wrestling led to a paradigm shift in mental health: Exercise as a first-line treatment for depression
Alarming levels of microplastics discovered in human brain tissue, linked to dementia
Global neurology leader makes The Neuro world's first open science institute
Alpha particle therapy emerges as a potent weapon against neuroendocrine tumours
[Press-News.org] 'Tailing' spiny lobster larvae to protect themNew tools track planktonic larvae, offer possible solutions to safeguard this $1 billion industry