PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Spot-welding graphene nanoribbons atom by atom

2013-06-13
(Press-News.org) Scientists at Aalto University, Finland and Utrecht University, the Netherlands have created single atom contacts between gold and graphene nanoribbons.

In their article published in Nature Communications, the research team demonstrates how to make electrical contacts with single chemical bonds to graphene nanoribbons. Graphene is a single layer of carbon atoms arranged in a honeycomb lattice. It is anticipated to be a revolutionising material for future electronics.

Graphene transistors functioning at room temperature require working at the size scale of less than 10 nanometres. This means that the graphene nanostructures have to be only a few tens of atoms in width. These transistors will need atomically precise electrical contacts. A team of researchers have now demonstrated experimentally how this can be done.

In their article the scientists address the problem by demonstrating how a single chemical bond can be used to make an electrical contact to a graphene nanoribbon.

– We cannot use alligator clips on the atomic scale. Using well-defined chemical bonds is the way forward for graphene nanostructures to realise their potential in future electronics, says Professor Peter Liljeroth who heads the Atomic Scale Physics group at Aalto University.

The team used atomic force microscopy (AFM) and scanning tunnelling microscopy (STM) to map the structure of the graphene nanoribbons with atomic resolution. The researchers used voltage pulses from the tip of the scanning tunnelling microscope to form single bonds to the graphene nanoribbons – precisely at a specific atomic location. The pulse removes a single hydrogen atom from the end of a graphene nanoribbon and this initiates the bond formation.

– Combined AFM and STM allows us to characterise the graphene nanostructures atom-by-atom, which is critical in understanding how the structure, the bonds with the contacts and their electrical properties are related, explains Dr Ingmar Swart who leads the team concentrating on STM and AFM measurements at Utrecht University.

Combining the microscopy experiments with theoretical modelling, the team developed a detailed picture of the contacted nanoribbon properties. The most significant discovery is that a single chemical bond forms an electronically transparent contact with the graphene nanoribbon – without affecting its overall electronic structure. This may be the key to using graphene nanostructures in future electronic devices, as the contact does not change the intrinsic ribbon properties.

– These experiments on atomically well-defined structures allow us to quantitatively compare theory and experiment. This is a great opportunity to test novel theoretical ideas, concludes Dr Ari Harju, leader of the theoretical team in the project at Aalto University.

### The study was performed at Aalto University Department of Applied Physics and at the Debye Institute in Utrecht University. The groups at Aalto are part of the Academy of Finland's Centres of Excellence in "Low Temperature Quantum Phenomena and Devices" and "Computational Nanosciences". Academy of Finland and the European Research Council ERC funded the research.

'Suppression of electron-vibron coupling in graphene nanoribbons contacted via a single atom': http://www.nature.com/ncomms/2013/130612/ncomms3023/full/ncomms3023.html

Press images: http://aalto.digtator.fi:80/public/74418896c84F.aspx

Captions Photo name: suggestion-02
AFM images before (left) and after (right) the formation of a single bond contact to a graphene nanoribbon.

Photo name: GNR_on_Au(111)
Schematics (top) and measured (bottom) AFM images before (left) and after (right) formation of a single bond contact to a graphene nanoribbon.

Photo name: GNR_on_Au(111)_6
Contacting a graphene nanoribbon by a single chemical bond.

Further information: Professor Peter Liljeroth
peter.liljeroth@aalto.fi
tel: +358 50 363 6115

Aalto University School of Science
Department of Applied Physics
http://physics.aalto.fi/


ELSE PRESS RELEASES FROM THIS DATE:

After an ACL tear: Research opens door to new treatments to improve recovery for athletes

2013-06-13
ANN ARBOR, Mich. — Striking the likes of Chicago Bulls' Derrick Rose, L.A. Lakers' Kobe Bryant and Detroit Tigers' Victor Martinez, tears in the anterior cruciate ligament (ACL) are one of the most rampant and serious knee injuries among athletes. Now, researchers from the University of Michigan Health System have identified a new drug target that may prevent one of the most dreaded consequences of an ACL tear –the weakening or loss of muscle tissue (muscle atrophy) that can be a career-killer in sports and ultimately develop into osteoarthritis. A hormone called myostatin ...

Researchers gain new molecular-level understanding of the brain's recovery after stroke

2013-06-13
DETROIT – A specific MicroRNA, a short set of RNA (ribonuclease) sequences, naturally packaged into minute (50 nanometers) lipid containers called exosomes, are released by stem cells after a stroke and contribute to better neurological recovery according to a new animal study by Henry Ford Hospital researchers. The important role of a specific microRNA transferred from stem cells to brain cells via the exosomes to enhance functional recovery after a stroke was shown in lab rats. This study provides fundamental new insight into how stem cells affect injured tissue and ...

Light-carved 'nano-volcanoes' hold promise for drug delivery

2013-06-13
Researchers from North Carolina State University have developed a method for creating "nano-volcanoes" by shining various colors of light through a nanoscale "crystal ball" made of a synthetic polymer. These nano-volcanoes can store precise amounts of other materials and hold promise for new drug-delivery technologies. The researchers create the nano-volcanoes by placing spherical, transparent polymer nanoparticles directly onto the flat surface of a thin film. They then shine ultraviolet light through the transparent sphere, which scatters the light and creates a pattern ...

DNA brings materials to life

2013-06-13
A colloid is a substance spread out evenly inside another substance. Everyday examples include milk, styrofoam, hair sprays, paints, shaving foam, gels and even dust, mud and fog. One of the most interesting properties of colloids is their ability to self-assemble – to aggregate spontaneously into well-defined structures, driven by nothing but local interactions between the colloid's particles. Self-assembly has been of major interest in industry, since controlling it would open up a whole host of new technologies, such as smart drug-delivery patches or novel paints that ...

DNA sequencing uncovers secrets of white cliffs of Dover

2013-06-13
The University of Exeter recently contributed to a major international project to sequence the genome of Emiliania huxleyi, the microscopic plankton species whose chalky skeletons form the iconic white cliffs of Dover. The results of the project are published this week in the journal Nature. Emiliania huxleyi is one of the most abundant marine phytoplankton species and is a key player in the process of CO2 exchange between the atmosphere and the ocean. In some marine systems 20% of the total carbon is fixed by E. huxleyi. This microscopic alga has influenced the global ...

UF study finds brain-imaging technique can help diagnose movement disorders

2013-06-13
GAINESVILLE, Fla. — A new University of Florida study suggests a promising brain-imaging technique has the potential to improve diagnoses for the millions of people with movement disorders such as Parkinson's disease. Utilizing the diffusion tensor imaging technique, as it is known, could allow clinicians to assess people earlier, leading to improved treatment interventions and therapies for patients. The three-year study looked at 72 patients, each with a clinically defined movement disorder diagnosis. Using a technique called diffusion tensor imaging, the researchers ...

Gene offers an athlete's heart without the exercise

2013-06-13
Researchers at Case Western Reserve University have found that a single gene poses a double threat to disease: Not only does it inhibit the growth and spread of breast tumors, but it also makes hearts healthier. In 2012, medical school researchers discovered the suppressive effects of the gene HEXIM1 on breast cancer in mouse models. Now they have demonstrated that it also enhances the number and density of blood vessels in the heart – a sure sign of cardiac fitness. Scientists re-expressed the HEXIM1 gene in the adult mouse heart and found that the hearts grew heavier ...

Study points to role of nervous system in arthritis

2013-06-13
Arthritis is a debilitating disorder affecting one in 10 Canadians, with pain caused by inflammation and damage to joints. Yet the condition is poorly managed in most patients, since adequate treatments are lacking – and the therapies that do exist to ease arthritis pain often cause serious side effects, particularly when used long-term. Any hope for developing more-effective treatments for arthritis relies on understanding the processes driving this condition. A new study in the Journal of Neuroscience by researchers at McGill University adds to a growing body of ...

A peptide to protect brain function

2013-06-13
A structure called "the microtubule network" is a crucial part of our nervous system. It acts as a transportation system within nerve cells, carrying essential proteins and enabling cell-to-cell communications. But in neurodegenerative diseases like Alzheimer's, ALS, and Parkinson's, this network breaks down, hindering motor abilities and cognitive function. Now Prof. Illana Gozes of Tel Aviv University's Sackler Faculty of Medicine has developed a new peptide in her lab, called NAP or Davunetide, that has the capacity to both protect and restore microtubule function. ...

Helping to restore balance after inner ear disorder

2013-06-13
Many disorders of the inner hear which affect both hearing and balance can be hugely debilitating and are currently largely incurable. Cochlear implants have been used for many years to replace lost hearing resulting from inner ear damage. However, to date, there has not been an analogous treatment for balance disorders resulting from inner ear disease. One potential new treatment is an implantable vestibular prosthesis which would directly activate the vestibular nerve by electrical stimulation. This prosthetic treatment is tested in a new study by Christopher Phillips ...

LAST 30 PRESS RELEASES:

Unsupervised strategies for naïve animals: New model of adaptive decision making inspired by baby chicks, turtles and insects

How cities primed spotted lanternflies to thrive in the US

UK polling clerks struggle to spot fake IDs, study reveals

How mindfulness can support GenAI use in transforming project management

Physical fitness of transgender and cisgender women is comparable, current evidence suggests

Duplicate medical records linked to 5-fold heightened risk of inpatient death

Air ambulance pre-hospital care may make surviving critical injury more likely

Significant gaps persist in regional UK access to 24/7 air ambulance services

Reproduction in space, an environment hostile to human biology

Political division in the US surged from 2008 onwards, study suggests

No need for rare earths or liquid helium! Cryogenic cooling material composed solely of abundant elements

Urban light pollution alters nighttime hormones in sharks, study shows

Pregnancy, breastfeeding associated with higher levels of cognitive function for postmenopausal women

Tiny dots, big impact: Using light to scrub industrial dyes from our water

Scientists uncover how biochar microzones help protect crops from toxic cadmium

Graphene-based materials show promise for tackling new environmental contaminants

Where fires used to be frequent, old forests now face high risk of devastating blazes

Emotional support from social media found to reduce anxiety

Backward walking study offers potential new treatment to improve mobility and decrease falls in multiple sclerosis patients

Top recognition awarded to 11 stroke researchers for science, brain health contributions

New paper proposes a framework for assessing the trustworthiness of research

Porto Summit drives critical cooperation on submarine cable resilience

University of Cincinnati Cancer Center tests treatment using ‘glioblastoma-on-a-chip’ and wafer technology

IPO pay gap hiding in plain sight: Study reveals hidden cost of ‘cheap stock’

It has been clarified that a fungus living in our body can make melanoma more aggressive

Paid sick leave as disease prevention

Did we just see a black hole explode? Physicists at UMass Amherst think so—and it could explain (almost) everything

Study highlights stressed faults in potential shale gas region in South Africa

Human vaginal microbiome is shaped by competition for resources

Test strip breakthrough for accessible diagnosis

[Press-News.org] Spot-welding graphene nanoribbons atom by atom