(Press-News.org) Stanford, CA—Transport proteins are responsible for moving materials such as nutrients and metabolic products through a cell's outer membrane, which seals and protects all living cells, to the cell's interior. These transported molecules include sugars, which can be used to fuel growth or to respond to chemical signals of activity or stress outside of the cell. Measuring the activity of transporter proteins in a living organism has been a challenge for scientists, because the methods are difficult, often require the use of radioactive tracers, and are difficult to use in intact tissues and organs.
A team led by Wolf Frommer, director of Carnegie's Plant Biology Department, has now developed a groundbreaking new way to overcome this technology gap. This new technology has major implications not just for plant biology, but also for cellular biology research in every type of organism, including humans. Their work is published by eLife.
"With the advent of biosensors, we could measure energy dynamics and concentrations of various cellular intermediates, which allowed us to get a first-level picture of metabolic networks," Frommer said. "But we had not been able to directly follow enzyme or transporter activity or to monitor their regulation in a live organism."
Frommer and his team hypothesized that it may be possible to probe transport activity by spying on the structural rearrangements that a transporter undergoes as it moves its target molecule across the membrane barrier. They decided to do this by encoding environmentally sensitive fluorescent tags in the cell's DNA.
The team—which included Carnegie's Roberto De Michele, Cindy Ast, Chen-Hsun Ho, Viviane Lanquar, and Guido Grossman—focused on the important transporter responsible for moving the ammonium into a cell. This activity is very important in plants, fungi, and bacteria, because ammonium serves as the key source of nitrogen in these organisms. But in excess ammonium becomes toxic. Therefore, its concentration must be very carefully regulated. The transporter for ammonium is conserved in plants, fungi, and, bacteria. It is also present in humans, where it is generally known as the Rhesus factor and plays an important role in kidney function and male fertility.
The team's approach has provided new insights into how the plant ammonium transporter works. And their sensor concept is expected to find many other applications to monitor other types of transporters and transporters in other organisms outside of the plant kingdom and even enzymes.
"For example, in humans such sensors could be used to help understand neurotransmitter transport in the brain or identify new drugs targets," Frommer said.
INFORMATION:
This work was made possible by the NSF, the Carnegie Institution for Science, and DAAD, the DOE Joint BioEnergy Institute, and the DFG.
The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.
END
STANFORD, Calif. —An existing FDA-approved drug improves cognitive function in a mouse model of Down syndrome, according to a new study by researchers at the Stanford University School of Medicine.
The drug, an asthma medication called formoterol, strengthened nerve connections in the hippocampus, a brain center used for spatial navigation, paying attention and forming new memories, the study said. It also improved contextual learning, in which the brain integrates spatial and sensory information.
Both hippocampal function and contextual learning, which are impaired ...
More people die from heart-disease during the winter months, and according to a new study published in the journal Cell Metabolism, the increase in mortality is possibly due to the accelerated growth of atherosclerotic plaque in the blood vessels caused by the activation of brown fat by the cold.
It has long been known that the number of deaths from cardiovascular diseases increases during the winter. It has been speculated that this might be the result of over-exertion while shovelling snow and a general decrease in physical activity, although the underlying mechanisms ...
VIDEO:
This animation shows the Earth's plasmasphere -- the innermost part of our planet's magnetosphere -- and the plasmaspheric wind, an outward flow of charged particles. The doughnut-shaped plasmasphere is centred...
Click here for more information.
A new study provides the first conclusive proof of the existence of a space wind first proposed theoretically over 20 years ago. By analysing data from the European Space Agency's Cluster spacecraft, researcher Iannis Dandouras ...
Electron transfer is a process by which an atom donates an electron to another atom. It is the foundation of all chemical reactions, and is of intense research because of the implications it has for chemistry and biology. When two molecules interact, electron transfer takes place in a few quadrillionths (10-15¬) of a second, or femtoseconds (fsec), meaning that studying this event requires very time-sensitive techniques like ultrafast spectroscopy. However, the transfer itself is often influenced by the solution in which the molecules are studied (e.g. water), and this ...
A spinal cord injury changes the functional state and structure of the spinal cord and the brain. For example, the patients' ability to walk or move their hands can become restricted. How quickly such degenerative changes develop, however, has remained a mystery until now. The assumption was that it took years for patients with a spinal cord injury to also display anatomical changes in the spinal cord and brain above the injury site. For the first time, researchers from the University of Zurich and the Uniklinik Balgrist, along with English colleagues from University College ...
COLLEGE PARK, MD - A tiny protein called ubiquitin – so named because it is present in every cell of living things as dissimilar as hollyhocks and humans - may hold the key to treatment for a variety of diseases from Parkinson's to diabetes. The protein, found in all eukaryotes (organisms with membranous cells), was considered unimportant when it was described in 1975. But scientists now know ubiquitin takes many different forms and is important in basic cellular processes, from controlling cells' circadian clocks to clearing away the harmful build-up of cells found in ...
CHAPEL HILL, N.C. -- Researchers have pinpointed the role of a gene known as Arl13b in guiding the formation and proper placement of neurons in the early stages of brain development. Mutations in the gene could help explain brain malformations often seen in neurodevelopmental disorders.
The research, led by a team at the University of North Carolina School of Medicine, was published June 30 in the journal Nature Neuroscience.
"We wanted to get a better sense of how the cerebral cortex is constructed," said senior study author Eva Anton, PhD, a professor in the Department ...
Sanfilippo Syndrome type A, or Mucopolysaccharidosis type IIIA (MPSIIIA), is a neurodegenerative disease caused by mutations in the gene that encodes the enzyme sulfamidase. Mutations in this gene lead to deficiencies in the production of the enzyme, which is essential for the breakdown of substances known as glycosaminoglicans. If these substances are not broken down, they accumulate in the cells and cause neuroinflammation and organ dysfunction, mainly in the brain, but also in other parts of the body. Children born with this mutation are diagnosed from the age of 4 or ...
Scientists at A*STAR's Genome Institute of Singapore (GIS) and the Max Planck Institute for Molecular Genetics (MPIMG) in Berlin (Germany) have discovered a molecular network in human embryonic stem cells (hESCs) that integrates cell communication signals to keep the cell in its stem cell state. These findings were reported in the June 2013 issue of Molecular Cell.
Human embryonic stem cells have the remarkable property that they can form all human cell types. Scientists around the world study these cells to be able to use them for medical applications in the future. ...
To convert a gene into a protein, a cell first crafts a blueprint out of RNA. One of the main players in this process has been identified by researchers led by Dr. Jessica Jacobs at the Ruhr-Universität Bochum. The team "fished" a large complex of proteins and RNA, which is involved in the so-called splicing, from the chloroplasts of the green alga Chlamydomonas reinhardtii. This cuts non-coding regions out of the messenger RNA, which contains the protein blueprint. "For the first time, we have established the exact composition of an unknown splicing complex of the chloroplasts", ...