(Press-News.org) UC San Francisco researchers have found a way to knock down cancers caused by a tumor-driving protein called “myc,” paving the way for patients with myc-driven cancers to enroll in clinical trials for experimental treatments.
Myc acts somewhat like a master switch within cells to foster uncontrolled growth. Until now, it has been impossible to target with drugs.
The discovery of an unexpected biochemical link within tumor cells should lead to clinical trials for experimental drug treatments that indirectly target myc and that already are being evaluated in human studies, the researchers said.
UCSF Helen Diller Family Comprehensive Cancer Center scientists led by Davide Ruggero, PhD, and Kevan Shokat, PhD, used one such drug to stop tumor growth in a mouse model of myc-driven lymphoma and multiple myeloma types of blood cancer.
Their study is published online in Proceedings of the National Academy of Sciences (PNAS).
Previously Ineffective Drug Therapies
Unrestrained myc activity is a major player in many cancers, including cancers of the lung, colon, breast, brain, prostate and blood. Abnormal myc in cancer often is associated with poor treatment outcomes, including death.
Although other cancer-associated proteins have been successfully attacked with targeted therapies in recent years, the myc protein has continued to elude efforts to develop drugs that target it. In the PNAS paper, the UCSF researchers describe how they found a way to indirectly, but effectively, target myc-driven tumors.
The researchers discovered that cancerous myc can be thwarted by treatment that targets a specific function performed by another protein, called mTOR. The mTOR protein is part of a different biochemical pathway controlling protein production and metabolism, one that also often takes a crooked turn in tumors.
Protein Production in Cancer Is Promising Target
Ruggero has for several years been probing the ability of tumor cells to make extraordinary amounts of protein to sustain their rapid growth and immortality. He also explores ways to target this excess protein production in cancer.
“One of the major and immediate downstream effects of myc activation is a dramatic increase in the capacity of affected cells to make protein,” Ruggero said “This, in turn, leads to increased cell survival and proliferation, and to unstable genomes that foster additional mutations that turn these abnormal cells into tumor cells.”
In earlier studies, Ruggero found that myc not only drives protein production, but also that myc-driven cancer cells become absolutely dependent upon this ability to make abnormal amounts of protein. When he genetically manipulated myc-driven cancer cells to slow protein production, they committed suicide, as abnormal cells are supposed to do for the greater good.
“Tumors become addicted to excessive protein production, and mutant myc itself seems to depends on it,” Ruggero said.
When present in tumors, both abnormal myc and abnormal mTOR are known to be able to rev up protein production and to foster cell growth. However, it was unclear how this myc-driven protein production could be therapeutically targeted, Ruggero said.
In the new study, the UCSF team discovered that myc relies in part on mTOR to secure its protein supply. First mTOR disables a protein that acts as a tumor suppressor, called 4EBP1. The disabling of 4EBP1 releases normal constraints on protein production within the cell. Previously, other molecular actors had been thought to play leading roles in triggering excess protein production directed by myc.
“The discovery that myc converges on the same downstream path as mTOR was surprising to us,” Ruggero said.
Zeroing In on the mTOR Protein
The researchers targeted mTOR with an experimental drug based on a prototype first designed by Shokat, a chemist and an expert in designing molecules to target this type of protein, called a kinase. In the mice, drug treatment caused a shutdown of excess protein production in myc-driven cancer cells. Myc no longer was able to drive tumor growth, cancer cells committed suicide, and the treated mice survived longer.
“In the clinic, we frequently test myc levels in patients’ tumors, for disease prognosis and to predict treatment response,” said Michael Pourdehnad, MD, a clinical oncologist at UCSF with Ruggero's lab and the first author of the study. “Yet, the lack of specific therapies to target myc-driven cancers is frustrating. Our discovery may provide a novel solution for these patients.”
“We are excited by the work of Dr. Pourdehnad and colleagues and believe these results are an important advance in understanding the role of myc pathway dysregulation in multiple myeloma, and ultimately allow for the development of therapeutic strategies to address it,” said Jeffrey Wolf, MD, a UCSF blood disorder specialist and director of the Stephen and Nancy Grand Multiple Myeloma Translational Initiative at UCSF, a sponsor of the research.
The drug used in the study, called MLN0128, is made by Millennium, an independently operated subsidiary of Takeda Pharmaceutical Co., Ltd., based in Cambridge, Mass., and it is being evaluated in clinical trials to treat a variety of cancers. It had not previously been viewed as a weapon against myc-driven tumors, according to the UCSF researchers.
Currently sold drugs directed against mTOR do not inhibit its ability to target 4EBP1, which Ruggero refers to as a “master regulator” of protein production.
“This is a unique therapeutic approach to make myc druggable in the clinic,” Shokat said.
INFORMATION:
Additional co-authors of the study are UCSF graduate students Morgan Truitt and Greg Ducker, and Imran Siddiqi, MD, PhD, a pathologist at the University of Southern California. Additional funds for the research were awarded by the National Institutes of Health (Grants R01CA154916 and R01 CA140456), and the Waxman Foundation. Shokat is supported by the Howard Hughes Medical Institute, and Truitt is supported in part by an HHMI fellowship. The authors declare no conflict of interest in this research.
UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.
Follow UCSF
UCSF.edu | Facebook.com/ucsf | Twitter.com/ucsf | YouTube.com/ucsf
Deadliest cancers may respond to new drug treatment strategy
2013-07-19
ELSE PRESS RELEASES FROM THIS DATE:
A constitutional right to health care
2013-07-19
Uruguay has it. So does Latvia, and Senegal. In fact, more than half of the world's countries have some degree of a guaranteed, specific right to public health and medical care for their citizens written into their national constitutions.
The United States is one of 86 countries whose constitutions do not guarantee their citizens any kind of health protection. That's the finding of a new study from the UCLA Fielding School of Public Health that examined the level and scope of constitutional protection of specific rights to public health and medical care, as well as ...
A warmer planetary haven around cool stars, as ice warms rather than cools
2013-07-19
In a bit of cosmic irony, planets orbiting cooler stars may be more likely to remain ice-free than planets around hotter stars. This is due to the interaction of a star's light with ice and snow on the planet's surface.
Stars emit different types of light. Hotter stars emit high-energy visible and ultraviolet light, and cooler stars give off infrared and near-infrared light, which has a much lower energy.
It seems logical that the warmth of terrestrial or rocky planets should depend on the amount of light they get from their stars, all other things being equal. But new ...
Lizards show evolution is predictable
2013-07-19
If you could hit the reset button on evolution and start over, would essentially the same species appear? Yes, according to a study of Caribbean lizards by researchers at the University of California, Davis, Harvard University and the University of Massachusetts. The work is published July 19 in the journal Science.
The predictability of evolution over timescales of millions of years has long been debated by biologists, said Luke Mahler, a postdoctoral fellow at UC Davis and first author on the paper. For example, the late Stephen Jay Gould predicted that if you "rewound ...
Is sexual addiction the real deal?
2013-07-19
Controversy exists over what some mental health experts call "hypersexuality," or sexual "addiction." Namely, is it a mental disorder at all, or something else? It failed to make the cut in the recently updated Diagnostic and Statistical Manual of Mental Disorders, or DSM-5, considered the bible for diagnosing mental disorders. Yet sex addiction has been blamed for ruining relationships, lives and careers.
Now, for the first time, UCLA researchers have measured how the brain behaves in so-called hypersexual people who have problems regulating their viewing of sexual ...
NUS researchers developed world's first water treatment techniques using apple and tomato peels
2013-07-19
One of the most crucial problems affecting the world today is the scarcity of potable water. In a bid to make clean water available at low cost, Mr Ramakrishna Mallampati, a PhD candidate at the National University of Singapore (NUS), experimented with water treatment techniques using materials that are easily available, and came up with novel ways to purify water using the peels of apples and tomatoes. This is the first time that the peels of the two fruits have been used to remove different types of pollutants in water.
The studies were conducted under the guidance ...
Subdiaphragmatic vagotomy reduces intake of sweet-tasting solutions in rats
2013-07-19
A new study reports that subdiaphragmatic vagotomy reduces intake of sweet-tasting solutions in rats, and eliminate the hedonic perception produced by sucrose and saccharin in rats. Previous studies have shown that taste information and digestion information in animals during diet intake interact with each other in the central nervous system. So, how does subdiaphragmatic vagotomy influence the intake of sweet-tasting solution in rats? According to a study published in the Neural Regeneration Research (Vol. 8, No. 17, 2013), rats in the sham-surgery group drank more saccharin ...
Drinking alcohol during pregnancy affects learning and memory function in offspring?
2013-07-19
Maternal alcohol consumption during pregnancy has detrimental effects on fetal central nervous system development. Maternal alcohol consumption prior to and during pregnancy significantly affects cognitive functions in offspring, which may be related to changes in cyclin-dependent kinase 5 because it is associated with modulation of synaptic plasticity and impaired learning and memory. Prof. Ruiling Zhang and team from Xinxiang Medical University explored the correlation between cyclin-dependent kinase 5 expression in the hippocampus and neurological impairments following ...
Ketamine as anesthetics can damage children's learning and memory ability
2013-07-19
Recent studies have found that anesthesia drugs have neurotoxicity on the developing neurons, causing learning and memory disorders and behavioral abnormalities. Ketamine is commonly used in pediatric anesthesia. A clinical retrospective study found that children below 3 years old who receive a long time surgery, or because of surgery require ketamine repeatedly will exhibit the performance of school-age learning and memory disorders and behavioral abnormalities. Research group speculates that these abnormalities may be related to the potential neurotoxicity of ketamine. ...
Desktop printing at the nano level
2013-07-19
EVANSTON, Ill. --- A new low-cost, high-resolution tool is primed to revolutionize how nanotechnology is produced from the desktop, according to a new study by Northwestern University researchers.
Currently, most nanofabrication is done in multibillion-dollar centralized facilities called foundries. This is similar to printing documents in centralized printing shops. Consider, however, how the desktop printer revolutionized the transfer of information by allowing individuals to inexpensively print documents as needed. This paradigm shift is why there has been community-wide ...
Scientists discover new variability in iron supply to the oceans with climate implications
2013-07-19
The supply of dissolved iron to oceans around continental shelves has been found to be more variable by region than previously believed – with implications for future climate prediction.
Iron is key to the removal of carbon dioxide from the Earth's atmosphere as it promotes the growth of microscopic marine plants (phytoplankton), which mop up the greenhouse gas and lock it away in the ocean.
A new study, led by researchers based at the National Oceanography Centre Southampton, has found that the amount of dissolved iron released into the ocean from continental ...