(Press-News.org) EVANSTON, Ill. --- A new low-cost, high-resolution tool is primed to revolutionize how nanotechnology is produced from the desktop, according to a new study by Northwestern University researchers.
Currently, most nanofabrication is done in multibillion-dollar centralized facilities called foundries. This is similar to printing documents in centralized printing shops. Consider, however, how the desktop printer revolutionized the transfer of information by allowing individuals to inexpensively print documents as needed. This paradigm shift is why there has been community-wide ambition in the field of nanoscience to create a desktop nanofabrication tool.
"With this breakthrough, we can construct very high-quality materials and devices, such as processing semiconductors over large areas, and we can do it with an instrument slightly larger than a printer," said Chad A. Mirkin, senior author of the study and a world-renowned pioneer in the field of nanoscience.
Mirkin is the George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences and a professor of medicine, chemical and biological engineering, biomedical engineering and materials science and engineering. He also is the director of Northwestern's International Institute for Nanotechnology.
The study will be published July 19 in the journal Nature Communications.
The tool Mirkin's team has created produces working devices and structures at the nanoscale level in a matter of hours, right at the point of use. It is the nanofabrication equivalent of a desktop printer.
Without requiring millions of dollars in instrumentation costs, the tool is poised to prototype a diverse range of functional structures, from gene chips to protein arrays to building patterns that control how stem cells differentiate to making electronic circuits.
"Instead of needing to have access to millions of dollars, in some cases billions of dollars of instrumentation, you can begin to build devices that normally require that type of instrumentation right at the point of use," Mirkin said.
The paper details the advances Mirkin's team has made in desktop nanofabrication based upon easily fabricated beam-pen lithography (BPL) pen arrays, structures that consist of an array of polymeric pyramids, each coated with an opaque layer with a 100 nanometer aperture at the tip. Using a digital micromirror device, the functional component of a projector, a single beam of light is broken up into thousands of individual beams, each channeled down the back of different pyramidal pens within the array and through the apertures at the tip of each pen.
The nanofabrication tool allows one to rapidly process substrates coated with photosensitive materials called resists and generate structures that span the macro-, micro- and nanoscales, all in one experiment.
Key advances made by Mirkin's team include developing the hardware, writing the software to coordinate the direction of light onto the pen array and constructing a system to make all of the pieces of this instrument work together in synchrony. This approach allows each pen to write a unique pattern and for these patterns to be stitched together into functional devices.
"There is no need to create a mask or master plate every time you want to create a new structure," Mirkin said. "You just assign the beams of light to go in different places and tell the pens what pattern you want generated."
Because the materials used to make the desktop nanofabrication tool are easily accessible, commercialization may be as little as two years away, Mirkin said. In the meantime, his team is working on building more devices and prototypes.
In the paper, Mirkin explains how his lab produced a map of the world, with nanoscale resolution that is large enough to see with the naked eye, a feat never before achieved with a scanning probe instrument. Not only that, but closer inspection with a microscope reveals that this image is actually a mosaic of individual chemical formulae made up of nanoscale points. Making this pattern showcases the instrument's capability of simultaneously writing centimeter-scale patterns with nanoscale resolution.
The Nature Communications paper is titled "Desktop nanofabrication with massively
multiplexed beam-pen lithography." In addition to Mirkin, other authors are Xing Liao, Keith A. Brown, Abrin L. Schmucker, Guoliang Liu and Shu He, all of Northwestern University.
INFORMATION: END
The supply of dissolved iron to oceans around continental shelves has been found to be more variable by region than previously believed – with implications for future climate prediction.
Iron is key to the removal of carbon dioxide from the Earth's atmosphere as it promotes the growth of microscopic marine plants (phytoplankton), which mop up the greenhouse gas and lock it away in the ocean.
A new study, led by researchers based at the National Oceanography Centre Southampton, has found that the amount of dissolved iron released into the ocean from continental ...
An anti-cancer drug has been proven to be equally as effective in treating the most common cause of blindness in older adults as a more expensive drug specifically formulated for this purpose.
The results of a two-year trial, led by Queen's scientist Professor Usha Chakravarthy, and published in The Lancet today (Friday 19 July), show that two drug treatments Lucentis and Avastin are equally effective in treating neovascular or wet age-related macular degeneration (wet AMD).
Wet AMD is a common cause of sight loss in older people with at least 23,000 older people diagnosed ...
Babies have an innate biological need to be attached to caregivers, usually their parents. But what happens when babies spend a night or more per week away from a primary caregiver, as increasingly happens in cases where the parents share custody, but do not live together?
In a new national study, University of Virginia researchers found that infants who spent at least one night per week away from their mothers had more insecure attachments to the mother compared to babies who had fewer overnights or saw their fathers only during the day.
The finding is reported in the ...
Just over a century ago, Harvey Cushing published an account of a young woman who showed unusual symptoms because her glands were making excessive amounts of something. Subsequent research has shown that the thing in question is a set of hormones known as glucocorticoids that are produced by the adrenal glands, so "Cushing's disease" is now more commonly known as hyperadrenocorticism, at least by those who can pronounce it. The condition is particularly common in dogs, particularly as the animals grow older. Most cases result from a tumor in the pituitary gland but some ...
This news release is available in German. To write this little piece of text, the brain sends commands to arms and fingers to tap on the keyboard. Neuronal cells with their cable-like extensions, such as axons, transfer this information as electrical pulses that trigger muscles to move. The axonal signal speed can be to up to 100m/s in myelinated axons along the spinal cord.
For a long time, scientists assumed that axonal signal conduction is by and large digital: either there is a signal, "1", or there is no signal, "0".
Strong propagation speed variations
Now, ...
Depth cameras and other motion-tracking devices allow people to use natural gestures to play computer games, yet the experience remains unnatural because they can't feel what their eyes can see. Disney Research, Pittsburgh, has developed a solution, however, that could enhance not only games, but a variety of virtual experiences.
Called AIREAL, the new technology uses controlled puffs of compressed air – something akin to smoke rings – to create the impression of a ball bouncing off a hand, of an arm tingling from the flutter of a butterfly's wings, or of the rippling ...
Investigators at Disney Research, Zürich have developed a method for using hundreds of photographic images to build 3D computer models of complex, real-life scenes that meet the increasing demands of today's movie, TV and game producers for high-resolution imagery.
Building 3D models from multiple 2D images captured from a variety of viewing positions is nothing new, but doing so for highly detailed or cluttered environments at high resolution has proved difficult because of the large amounts of data involved. The Disney Research, Zürich team, however, developed an algorithm ...
This news release is available in German. For a car to accelerate there has to be friction between the tire and the surface of the road. The amount of friction generated depends on numerous factors, including the minute intermolecular forces acting between the two surfaces in contact – so-called van der Waals forces. The importance of these intermolecular interactions in generating friction has long been known, but has now been demonstrated experimentally for the first time by a research team led by Physics Professor Karin Jacobs from Saarland University and Professor ...
During heat waves -- when ozone production rises -- plants' ozone absorption is curtailed, leaving more pollution in the air, and costing an estimated 460 lives in the UK in the hot summer of 2006.
Vegetation plays a crucial role in reducing air pollution, but new research by the Stockholm Environment Institute (SEI) at the University of York shows that they may not protect us when we need it most: during extreme heat, when ozone formation from traffic fumes, industrial processes and other sources is at its worst.
The reason, explained lead author Dr Lisa Emberson, is ...
Researchers at the University of Warwick have recovered tuberculosis (TB) genomes from the lung tissue of a 215-year old mummy using a technique known as metagenomics.
The team, led by Professor Mark Pallen, Professor of Microbial Genomics at Warwick Medical School, working with Helen Donoghue at University College London and collaborators in Birmingham and Budapest, sought to use the technique to identify TB DNA in a historical specimen.
The term 'metagenomics' is used to describe the open-ended sequencing of DNA from samples without the need for culture or target-specific ...