(Press-News.org) ANN ARBOR, Mich. — A new stem cell-based approach to studying epilepsy has yielded a surprising discovery about what causes one form of the disease, and may help in the search for better medicines to treat all kinds of seizure disorders.
The findings, reported by a team of scientists from the University of Michigan Medical School and colleagues, use a technique that could be called "epilepsy in a dish".
By turning skin cells of epilepsy patients into stem cells, and then turning those stem cells into neurons, or brain nerve cells, the team created a miniature testing ground for epilepsy. They could even measure the signals that the cells were sending to one another, through tiny portals called sodium channels.
In neurons derived from the cells of children who have a severe, rare genetic form of epilepsy called Dravet syndrome, the researchers report abnormally high levels of sodium current activity. They saw spontaneous bursts of communication and "hyperexcitability" that could potentially set off seizures. Neurons made from the skin cells of people without epilepsy showed none of this abnormal activity.
They report their results online in the Annals of Neurology, and have further work in progress to create induced pluripotent stem cell lines from the cells of patients with other genetic forms of epilepsy. The work is funded by the National Institutes of Health, the American Epilepsy Society, the Epilepsy Foundation and U-M.
The new findings differs from what other scientists have seen in mice -- demonstrating the importance of studying cells made from human epilepsy patients. Because the cells came from patients, they contained the hallmark seen in most patients with Dravet syndrome: a new mutation in SCN1A, the gene that encodes the crucial sodium channel protein called Nav1.1. That mutation reduces the number of channels to half the normal number in patients' brains.
"With this technique, we can study cells that closely resemble the patient's own brain cells, without doing a brain biopsy," says senior author and team leader Jack M. Parent, M.D., professor of neurology at U-M and a researcher at the VA Ann Arbor Healthcare System. "It appears that the cells are overcompensating for the loss of channels due to the mutation. These patient-specific induced neurons hold great promise for modeling seizure disorders, and potentially screening medications."
With the new paper, Parent, postdoctoral fellow Yu Liu, Ph.D. and their collaborators Lori Isom, Ph.D., professor of Pharmacology and of Molecular and Integrative Physiology at U-M, and Miriam Meisler, Ph.D., Distinguished University Professor of Human Genetics at U-M, report striking discoveries about what is happening at the cell level in the neurons of Dravet syndrome patients with a mutated SCN1A gene.
They also demonstrated that the effect is rooted in something that happens after function of the gene is reduced due to the mutation, though they don't yet know how or why the nerve cells overcompensate for partial loss of this channel.
And, they found that the neurons didn't show the telltale signs of hyperexcitability in the first few weeks after they were made -- consistent with the fact that children with Dravet syndrome often don't suffer their first seizures until they are several months old.
"In addition, reproduction of the hyperactivity of epileptic neurons in these cell cultures demonstrates that there is an intrinsic change in the neurons that does not depend on input from circuits in the brain," says co-author Meisler.
A platform for testing medications
Many Dravet patients don't respond to current epilepsy medications, making the search for new options urgent. Their lives are constantly under threat by the risk of SUDEP, sudden unexplained death in epilepsy – and they never outgrow their condition, which delays their development and often requires round-the-clock care.
"Working with patient families, and translating our sodium channel research to a pediatric disease, has made our basic science work much more immediate and critical," says Isom, who serves on the scientific advisory board of the Dravet Syndrome Foundation along with Meisler. Parent, who co-directs U-M's Comprehensive Epilepsy Program, was recently honored by the foundation.
The team is now working toward screening specific compounds for seizure-calming potential in Dravet syndrome, by testing their impact on the cells in the "epilepsy in a dish" model. The National Institutes of Health has made a library of drugs that have been approved by the U.S. Food and Drug Administration available for researchers to use -- potentially allowing older drugs to have a second life treating an entirely different disease from what they were initially intended.
Parent and his colleagues hope to identify drugs that affect certain aspects of sodium channels, to see if they can dampen the sodium currents and calm hyperexcitability. The team is exploring new techniques that can make this process faster, using microelectrodes and calcium-sensitive dyes. They also hope to use the model to study potential drugs for non-genetic forms of epilepsy.
Having a U-M team that includes experts in induced pluripotent stem cell biology, sodium channel physiology and epilepsy genetics expertise helps the research progress, Parent notes. "Epilepsy is a complicated brain network disease," he says. "It takes team-based science to address it."
Patients as part of the research team
The U-M team's research wouldn't be possible without the participation of patients with Dravet syndrome and other genetic forms of epilepsy, and their parents.
More than 100 of them have joined the International Ion Channel Epilepsy Patient Registry, which is based at U-M and Miami Children's Hospital and co-funded by the Dravet Syndrome Foundation and the ICE Epilepsy Alliance. The researchers hope to be able to conduct clinical trials of potential drugs with participation by these patients and others.
Meanwhile, patients with other genetically based neurological diseases can also help U-M scientists discover more about their conditions, by taking part in other efforts to create induced neurons from skin cells. Parent and his team have worked with several other U-M faculty to create stem cell lines from skin cells provided by patients with other diseases including forms of ataxia and lysosmal storage disease.
INFORMATION:
In addition to Parent, Liu, Meisler and Isom, the research team includes U-M's Luis F. Lopez-Santiago, PhD, Yukun Yuan, PhD, Julie M. Jones, MS, Helen Zhang, MS, Heather A. O'Malley, Ph.D., Gustavo A. Patino, PhD, Janelle E. O'Brien, PhD, Raffaella Rusconi, PhD, and Robert C. Thompson, PhD, and the Cleveland Clinic's Ajay Gupta, MD, and Marvin R. Natowicz, MD, PhD.
Reference: http://onlinelibrary.wiley.com/doi/10.1002/ana.23897/abstract
Funding: National Institute of Neurological Diseases and Stroke: RC1NS068684, NS064245, NS076752, National Heart, Lung and Blood Institute T32HL007853, National Institute of General Medical Sciences Genetics T32GM007544, U-M Rare Disease Initiative, Epilepsy Foundation, American Epilepsy Society, U-M Cardiovascular Center, Istituto Neurologico C. Besta, Milan, Italy.
Epilepsy in a dish: Stem cell research reveals clues to disease's origins and possible treatment
U-M-led study of neurons created from skin of patients with Dravet syndrome
2013-07-25
ELSE PRESS RELEASES FROM THIS DATE:
Trust in leaders, sense of belonging stir people to safeguard common goods, analysis shows
2013-07-25
Every day, people donate to charities, volunteer to clean up city parks, or scale back their driving to curb air pollution. But some take these public goods for granted and ride free on the efforts of others. They watch public television but never make a donation to fund it. Or they run their lawn sprinklers during a drought while their neighbors follow government pleas to limit water consumption.
A new report in Psychological Science in the Public Interest, a journal of the Association for Psychological Science, examines more than 25 years' worth of studies on the use ...
Bee faithful? Plant-pollinator relationships compromised when bee species decline
2013-07-24
Remove even one bumblebee species from an ecosystem and the effect is swift and clear: Pollination is less effective, and plants produce significantly fewer seeds.
This according to research published today in the journal Proceedings of the National Academy of Sciences that focuses on the interactions between bumblebees and larkspur wildflowers in Colorado's Rocky Mountains.
The findings show that reduced competition among pollinators disrupts floral fidelity, or specialization, among the remaining bees in the system, leading to less successful plant reproduction.
"We ...
Face identification accuracy is in the eye (and brain) of the beholder, UCSB researchers say
2013-07-24
(Santa Barbara, Calif.) –– Though humans generally have a tendency to look at a region just below the eyes and above the nose toward the midline when first identifying another person, a small subset of people tend to look further down –– at the tip of the nose, for instance, or at the mouth. However, as UC Santa Barbara researchers Miguel Eckstein and Matthew Peterson recently discovered, "nose lookers" and "mouth lookers" can do just as well as everyone else when it comes to the split-second decision-making that goes into identifying someone. Their findings are in a recent ...
Emergency response could be faster, better, and more confident with 'option awareness' approach
2013-07-24
In a paper on decision making, human factors/ergonomics (HF/E) researchers found that choosing the best available emergency response could be improved by showing decision makers a depiction of the emergency decision space that allows them to compare their options visually. The researchers have developed the theory of option awareness (how people perceive and understand the desirability of available options), which can increase decision-making speed as well as accuracy, and confidence.
In the Journal of Cognitive Engineering and Decision Making article, "Supporting Complex ...
How does the motor relearning program improve neurological function of brain ischemia?
2013-07-24
The motor relearning program can significantly improve various functional disturbance induced by ischemic cerebrovascular diseases. However, its mechanism of action remains poorly understood. According to a study published in the Neural Regeneration Research (Vol. 8, No. 16, 2013), models of ischemic brain injury in the rhesus macaque were induced by electrocoagulation of the M1 segment of the right middle cerebral artery, then the motor relearning program was after model establishment. Glial fibrillary acidic protein and neurofilament protein expression changes could reflect ...
Mechanical tension promotes nerve regeneration of skin pathological scars
2013-07-24
Scars are prone to appear at high tension parts, such as the sternum, shoulder and back, which are serious clinical problems. Surgeons reduce scar formation through Z, W, V-Y flap variation and reducing blade tension, but its specific mechanism are still not very clear. Hu Xiao and colleagues from Shandong Provincial Hospital Affiliated to Shandong University verified that mechanical tension contributed to the formation of a hyperplastic scar in the back skin of rats, in conjunction with increases in both nerve density and nerve growth factor expression in the scar tissue. ...
NPY and leptin receptor in the hypothalamus of rats with chronic immobilization stress
2013-07-24
A recent study entitled "Neuropeptide Y and leptin receptor expression in the hypothalamus of rats with chronic immobilization stress" showed that the body weight and food intake of rats subjected to chronic immobilization stress were significantly decreased; the expression of leptin receptor and the co-localization coeffient in these leptic receptor neurons in the arcuate nucleus of the hypothalamus were both upregulated, while the number of neuropeptide Y neurons was decreased. These findings which were in the Neural Regeneration Research (Vol. 8, No. 18, 2013) indicated ...
Male guppies ensure successful mating with genital claws
2013-07-24
TORONTO, ON – Some males will go to great lengths to pursue a female and take extreme measures to hold on once they find one that interests them, even if that affection is unrequited. New research from evolutionary biologists at the University of Toronto shows that the male guppy grows claws on its genitals to make it more difficult for unreceptive females to get away during mating.
Genitalia differ greatly in animal groups, even among similar species – so much so that even closely related species may have very different genitalia. The reasons for these differences are ...
New study refutes existence and clinical potential of very small embryonic-like stem cells
2013-07-24
Scientists have reported that very small embryonic-like stem cells (VSELs), which can be isolated from blood or bone marrow rather than embryos, could represent an alternative to mouse and human embryonic stem cells for research and medicine. But their very existence is hotly debated, and a study appearing online on July 24th in the ISSCR's journal Stem Cell Reports, published by Cell Press, provides strong evidence against the existence of VSELs capable of turning into different cell types. The findings call into question current plans to launch a clinical trial aimed ...
A novel screening method makes it easier to diagnose and treat children with autism
2013-07-24
Researchers have developed a new screening method to diagnose autism, which unlike current methods does not rely on subjective criteria. These results are published in a series of studies in the open-access journal Frontiers in Neuroscience.
The studies, funded by a US$ 650,000 grant from the National Science Foundation, were led by Elizabeth Torres, a computational neuroscientist, and Dimitri Metaxas, a computer scientist, both at Rutgers University, in collaboration with Jorge V. Jose, a theoretical physicist and computational neuroscientist from Indiana University. ...
LAST 30 PRESS RELEASES:
Study shows seed impact mills clobber waterhemp seed viability
Study links rising suicidality among teen girls to increase in identifying as LGBQ
Mind’s eye: Pineal gland photoreceptor’s 2 genes help fish detect color
Nipah virus: epidemiology, pathogenesis, treatment, and prevention
FDA ban on Red Dye 3 and more are highlighted in Sylvester Cancer's January tip sheet
Mapping gene regulation
Exposure to air pollution before pregnancy linked to higher child body mass index, study finds
Neural partially linear additive model
Dung data: manure can help to improve global maps of herbivore distribution
Concerns over maternity provision for pregnant women in UK prisons
UK needs a national strategy to tackle harms of alcohol, argue experts
Aerobic exercise: a powerful ally in the fight against Alzheimer’s
Cambridge leads first phase of governmental project to understand impact of smartphones and social media on young people
AASM Foundation partners with Howard University Medical Alumni Association to provide scholarships
Protective actions need regulatory support to fully defend homeowners and coastal communities, study finds
On-chip light control of semiconductor optoelectronic devices using integrated metasurfaces
America’s political house can become less divided
A common antihistamine shows promise in treating liver complications of a rare disease complication
Trastuzumab emtansine improves long-term survival in HER2 breast cancer
Is eating more red meat bad for your brain?
How does Tourette syndrome differ by sex?
Red meat consumption increases risk of dementia and cognitive decline
Study reveals how sex and racial disparities in weight loss surgery have changed over 20 years
Ultrasound-directed microbubbles could boost immune response against tumours, new Concordia research suggests
In small preliminary study, fearful pet dogs exhibited significantly different microbiomes and metabolic molecules to non-fearful dogs, suggesting the gut-brain axis might be involved in fear behavior
Examination of Large Language Model "red-teaming" defines it as a non-malicious team-effort activity to seek LLMs' limits and identifies 35 different techniques used to test them
Most microplastics in French bottled and tap water are smaller than 20 µm - fine enough to pass into blood and organs, but below the EU-recommended detection limit
A tangled web: Fossil fuel energy, plastics, and agrichemicals discourse on X/Twitter
This fast and agile robotic insect could someday aid in mechanical pollination
Researchers identify novel immune cells that may worsen asthma
[Press-News.org] Epilepsy in a dish: Stem cell research reveals clues to disease's origins and possible treatmentU-M-led study of neurons created from skin of patients with Dravet syndrome