(Press-News.org) With sea ice at its lowest point in 1,500 years, how might ecological communities in the Arctic be affected by its continued and even accelerated melting over the next decades? In a review article in the journal Science, to be published on 2 August 2013, Eric Post, a Penn State University professor of biology, and an international team of scientists tackle this question by examining relationships among algae, plankton, whales, and terrestrial animals such as caribou, arctic foxes, and walrus; as well as the effects of human exploration of previously inaccessible parts of the region.
"Our team set out to explore the 'domino effect' of sea-ice loss on marine animals, as well as on land-dwelling species living adjacent to ice," Post said. "Arctic sea ice should be thought of as a biome or an ecosystem and the effects of melting and warming on microorganisms living under ice in this biome already have received much attention. However, those animals living near the ice likely are feeling the effects, as well." Post explained that, after reaching its record low in August of 2012, sea ice is expected to continue to melt at an accelerating rate. "Over the entire period covered by the record, Arctic sea ice has declined by more than 86,000 square kilometers -- a space slightly larger than the state of South Carolina -- per year," Post said. "That's an area of critical habitat for many species and the rate of loss is increasing." Post added that an acceleration of this rate likely will be due, in part, to the loss of albedo -- the white surface provided by ice that reflects sunlight -- thereby causing a cooling effect. The high albedo of ice, Post added, will be replaced by a much less-reflective, darker surface of open water -- and the effect will be accelerated warming and thus, accelerated melting. "By viewing sea ice as essential habitat and a substrate for important species interactions, rather than as a lifeless blank surface, its loss as a result of warming becomes a rather stunning prospect," Post emphasized.
The domino effect of sea-ice melting on terrestrial animals, Post explained, could happen in the following way though a disruption in the food chain: Sea-ice algae and sub-ice plankton, which together account for 57 percent of the total annual biological production in the Arctic Ocean, already are being immediately affected by sea-ice melting because ice loss triggers a significant change in the blooming times of these organisms. Likewise, land adjacent to areas of sea-ice loss will experience significant surface warming inland from the coastline, affecting soil conditions and plant growth. In their review article, Post and his colleagues hypothesize that, while invertebrate ocean-dwelling animals such as zooplankton that feed on algae and phytoplankton in the seas already are being affected, larger terrestrial animals such as caribou could find their land-dwelling food sources disrupted, as well, due to temperature changes affecting plant communities inland.
"A change in population mixing could be another, indirect effect of sea-ice melting," Post said. He explained that populations of wolves and arctic foxes that currently are isolated only during the summer could become even more isolated: A longer period of the year without ice, which promotes travel between populations, could lead to a decline in crossbreeding.
However, for other species, the effect of sea-ice loss could be just the opposite: "We know that, for some species, sea ice acts as a barrier to intermixing," Post explained. "So ice loss and a lengthening of the ice-free season likely will increase population mixing, reducing genetic differentiation." Post explained that, for example, polar and grizzly bears already have been observed to have hybridized because polar bears now are spending more time on land where they have contact with grizzlies.
While such mixing of populations is not necessarily cause for concern, Post explained, it could lead to drastic changes in disease dynamics. For example, a population that currently is a host to a certain pathogen could carry that pathogen to another, previously unexposed population. "In addition, a decrease in sea ice in arctic Canada likely will increase contact between eastern and western arctic species, promoting mixing of pathogen communities that previously were isolated," Post said. "For example, phocine distemper virus (PDV) currently affects eastern Arctic seals. But if these seals begin to mix with western arctic seals, the virus may reach other, naive populations."
Furthermore, mere crowding of animals in coastal habitat as sea ice retreats also could present challenges to the health and vitality of populations of some species, especially walrus, Post explained. "Walrus are benthic feeders," Post said, "which means they are specialists in foraging for food that occurs only in shallow waters. They also use the edge of the sea ice to rest and dive from while foraging. However, as sea ice melts and its edge retreats from the shoreline, it becomes located above deeper water. As a result, walrus have been observed abandoning the retreating ice edge and congregating along shorelines, from which they can try to maintain access to shallow water. This behavior, however, increases the local density of animals on such 'haulouts,' and can promote transmission of pathogens as well as lead to trampling of young."
Post added that greater accessibility of previously remote parts of the Arctic to human exploration could be yet another unexpected consequence of sea-ice loss. "Retreating sea ice, longer ice-free seasons, and loss of sea ice are expected to promote development of shipping lanes and increased shipping traffic in areas that formerly were rather inaccessible," Post said. "This increased marine access likely will accelerate the pace of mineral and petroleum exploration in the Arctic, which in turn could affect both terrestrial and marine animals; for example, bowhead whales and Pacific walrus."
INFORMATION:
In addition to Post, other researchers who contributed to this review article include Jeffrey Kerby, a graduate student in the ecology program at Penn State; Uma Bhatt and Donald A. Walker from the University of Alaska in Fairbanks; Cecilia Bitz from the University of Washington; Jedediah Brodie from the University of British Columbia in Vancouver, Canada; Tara L. Fulton from the University of California in Santa Cruz; Mark Hebblewhite from the University of Montana; Susan Kutz from the University of Calgary; and Ian Stirling from the University of Alberta in Edmonton, Canada.
The research was funded by the U.S. National Science Foundation and also was supported, in part, by the Polar Center at Penn State through the Penn State Institutes of Energy and the Environment.
[ Katrina Voss ]
CONTACTS
Eric Post: esp10@psu.edu, (via satellite phone at field research site in Greenland): country code (011 from the U.S.) + 88-163-262-5795; (via cell phone through 28 July 2013): 814-777-0924
Barbara Kennedy (PIO): science@psu.edu, 814-863-4682
IMAGES
High-resolution images associated with this research are online at http://www.science.psu.edu/news-and-events/2013-news/Post7-2013 .
Arctic sea-ice loss has widespread effects on wildlife
2013-08-02
ELSE PRESS RELEASES FROM THIS DATE:
2 dimensions of value: Dopamine neurons represent reward but not aversiveness
2013-08-02
To make decisions, we need to estimate the value of sensory stimuli and motor actions, their "goodness" and "badness." We can imagine that good and bad are two ends of a single continuum, or dimension, of value. This would be analogous to the single dimension of light intensity, which ranges from dark on one end to bright light on the other, with many shades of gray in between. Past models of behavior and learning have been based on a single continuum of value, and it has been proposed that a particular group of neurons (brain cells) that use dopamine as a neurotransmitter ...
Future warming: Issues of magnitude and pace
2013-08-02
Washington, DC—Researchers reviewed the likelihood of continued changes to the terrestrial climate, including an analysis of a collection of 27 climate models. If emissions of heat-trapping gases continue along the recent trajectory, 21st century mean annual global warming could exceed 3.6 °F ( 2 °C) over most terrestrial regions during 2046 to 2065 and 7.2 °F (4 °C) during 2081-2100. If warming occurs at this pace, it will probably be the most rapid large climate change in the last 65 million years.
The review, published in the August 2 issue of Science, was conducted ...
Genetic background check may explain why mutations produce different results
2013-08-02
Two women have the same genetic mutation – an abnormal BRCA1 gene that puts them both at much higher-than-average risk for breast cancer – but only one woman develops the disease. Why? Michigan State University genetic scientists have begun to understand the mechanisms behind the phenomena.
"It's been known for a while that genetic mutations can modify each other," explained Ian Dworkin, MSU associate professor of zoology. "And we also know that the subtle differences in an individual's genome – what scientists call wild type genetic background -- also affects how mutations ...
Climate strongly affects human conflict and violence worldwide, says study
2013-08-02
BERKELEY — Shifts in climate are strongly linked to human violence around the world, with even relatively minor departures from normal temperature or rainfall substantially increasing the risk of conflict in ancient times or today, according to a new study by researchers at the University of California, Berkeley, and Princeton University.
The results, which cover all major regions of the world and show similar patterns whether looking at data from Brazil, China, Germany, Somalia or the United States, were published today (Thursday, Aug. 1) in the journal Science. By ...
Common genetic ancestors lived during roughly same time period, Stanford scientists find
2013-08-02
STANFORD, Calif. — Mitochondrial Eve and Y-chromosomal Adam — two individuals who passed down a portion of their genomes to the vast expanse of humanity — are known as our most recent common ancestors, or MRCAs. But many aspects of their existence, including when they lived, are shrouded in mystery.
Now, a study led by the Stanford University School of Medicine indicates the two roughly overlapped during evolutionary time: from between 120,000 to 156,000 years ago for the man, and between 99,000 and 148,000 years ago for the woman.
"Previous research has indicated that ...
'Soft' approach leads to revolutionary energy storage
2013-08-02
Monash University researchers have brought next generation energy storage closer with an engineering first - a graphene-based device that is compact, yet lasts as long as a conventional battery.
Published today in Science, a research team led by Professor Dan Li of the Department of Materials Engineering has developed a completely new strategy to engineer graphene-based supercapacitors (SC), making them viable for widespread use in renewable energy storage, portable electronics and electric vehicles.
SCs are generally made of highly porous carbon impregnated with a ...
Scientists find long-sought method to efficiently make complex anticancer compound
2013-08-02
LA JOLLA, CA – August 1, 2013 – Scientists at The Scripps Research Institute (TSRI) have achieved the first efficient chemical synthesis of ingenol, a highly complex, plant-derived compound that has long been of interest to drug developers for its anticancer potential. The achievement will enable scientists to synthesize a wide variety of ingenol derivatives and investigate their therapeutic properties. The achievement also sets the stage for the efficient commercial production of ingenol mebutate, a treatment for actinic keratosis (a common precursor to non-melanoma skin ...
Scientists uncover secrets of starfish's bizarre feeding mechanism
2013-08-02
Scientists have identified a molecule that enables starfish to carry out one of the most remarkable forms of feeding in the natural world.
A starfish feeds by first extending its stomach out of its mouth and over the digestible parts of its prey, such as mussels and clams. The prey tissue is partially digested externally before the soup-like "chowder" produced is drawn back into its 10 digestive glands.
The researchers at Queen Mary, University of London and the University of Warwick have discovered a neuropeptide -- a molecule which carries signals between neurons -- ...
The 4-point test to predict death risk from C. difficile
2013-08-02
A Clostridium difficile (C. diff) infection is one that can affect the digestive system and most commonly affects people staying in hospital. It is not generally a problem for healthy people but may infect those on antibiotics with an imbalance of 'good bacteria' in the gut.
A research paper published today, 2nd August 2013, in BMC Infectious Diseases has for the first time identified a unique four-point test using easily measurable clinical variables which can be used to accurately predict the death risk to patients from C. diff. Accurate prediction means that those ...
Temperature alters population dynamics of common plant pests
2013-08-02
Temperature-driven changes alter outbreak patterns of tea tortrix -- an insect pest -- and may shed light on how temperature influences whether insects emerge as cohesive cohorts or continuously, according to an international team of researchers. These findings have implications for both pest control and how climate change may alter infestations.
"While the influence of temperature on individual-level life-history traits is well understood, the impact on population-level dynamics, such as population cycles or outbreak frequency is less clear," the researchers report in ...